Wavelet Transforms and Localization Operators:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Basel
Birkhäuser Basel
2002
|
Schriftenreihe: | Operator Theory: Advances and Applications
136 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This book is based on lectures given at the Global Analysis Research Center (GARC) of Seoul National University in 1999and at Peking University in 1999and 2000. Preliminary versions of the book have been used for various topics courses in analysis for graduate students at York University. We study in this book wavelet transforms and localization operators in the context of infinite-dimensional and square-integrable representations of locally compact and Hausdorffgroups. The wavelet transforms studied in this book, which include the ones that come from the Weyl-Heisenberg group and the well-known affine group, are the building blocks of localization operators. The theme that dominates the book is the spectral theory of wavelet transforms and localization operators in the form of Schatten-von Neumann norm inequalities. Several chap ters are also devoted to the product formulas for concrete localization operators such as Daubechies operators and wavelet multipliers. This book is a natural sequel to the book on pseudo-differential operators [103] and the book on Weyl transforms [102] by the author. Indeed, localization operators on the Weyl-Heisenberg group are Weyl transforms, which are in fact pseudo-differential operators. Details on the perspective and the organization of the book are laid out in the first chapter. This is a book on mathematics and is written for anyone who has taken basic graduate courses in measure theory and functional analysis. Some knowledge of group theory and general topology at the undergraduate level is also assumed |
Beschreibung: | 1 Online-Ressource (VII, 156 p) |
ISBN: | 9783034882170 9783034894784 |
DOI: | 10.1007/978-3-0348-8217-0 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042422068 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2002 |||| o||u| ||||||eng d | ||
020 | |a 9783034882170 |c Online |9 978-3-0348-8217-0 | ||
020 | |a 9783034894784 |c Print |9 978-3-0348-9478-4 | ||
024 | 7 | |a 10.1007/978-3-0348-8217-0 |2 doi | |
035 | |a (OCoLC)863716847 | ||
035 | |a (DE-599)BVBBV042422068 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Wong, M. W. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Wavelet Transforms and Localization Operators |c by M. W. Wong |
264 | 1 | |a Basel |b Birkhäuser Basel |c 2002 | |
300 | |a 1 Online-Ressource (VII, 156 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Operator Theory: Advances and Applications |v 136 | |
500 | |a This book is based on lectures given at the Global Analysis Research Center (GARC) of Seoul National University in 1999and at Peking University in 1999and 2000. Preliminary versions of the book have been used for various topics courses in analysis for graduate students at York University. We study in this book wavelet transforms and localization operators in the context of infinite-dimensional and square-integrable representations of locally compact and Hausdorffgroups. The wavelet transforms studied in this book, which include the ones that come from the Weyl-Heisenberg group and the well-known affine group, are the building blocks of localization operators. The theme that dominates the book is the spectral theory of wavelet transforms and localization operators in the form of Schatten-von Neumann norm inequalities. Several chap ters are also devoted to the product formulas for concrete localization operators such as Daubechies operators and wavelet multipliers. This book is a natural sequel to the book on pseudo-differential operators [103] and the book on Weyl transforms [102] by the author. Indeed, localization operators on the Weyl-Heisenberg group are Weyl transforms, which are in fact pseudo-differential operators. Details on the perspective and the organization of the book are laid out in the first chapter. This is a book on mathematics and is written for anyone who has taken basic graduate courses in measure theory and functional analysis. Some knowledge of group theory and general topology at the undergraduate level is also assumed | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Analysis | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Pseudodifferentialoperator |0 (DE-588)4047640-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Integraloperator |0 (DE-588)4131247-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lokalisation |0 (DE-588)4195351-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Operatortheorie |0 (DE-588)4075665-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wavelet |0 (DE-588)4215427-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Integraloperator |0 (DE-588)4131247-8 |D s |
689 | 0 | 1 | |a Pseudodifferentialoperator |0 (DE-588)4047640-6 |D s |
689 | 0 | 2 | |a Wavelet |0 (DE-588)4215427-3 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Wavelet |0 (DE-588)4215427-3 |D s |
689 | 1 | 1 | |a Operatortheorie |0 (DE-588)4075665-8 |D s |
689 | 1 | 2 | |a Lokalisation |0 (DE-588)4195351-4 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-0348-8217-0 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857485 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153095949647872 |
---|---|
any_adam_object | |
author | Wong, M. W. |
author_facet | Wong, M. W. |
author_role | aut |
author_sort | Wong, M. W. |
author_variant | m w w mw mww |
building | Verbundindex |
bvnumber | BV042422068 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863716847 (DE-599)BVBBV042422068 |
dewey-full | 515 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515 |
dewey-search | 515 |
dewey-sort | 3515 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-0348-8217-0 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03723nmm a2200589zcb4500</leader><controlfield tag="001">BV042422068</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2002 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034882170</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-0348-8217-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034894784</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-0348-9478-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-0348-8217-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863716847</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422068</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wong, M. W.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Wavelet Transforms and Localization Operators</subfield><subfield code="c">by M. W. Wong</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">Birkhäuser Basel</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VII, 156 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Operator Theory: Advances and Applications</subfield><subfield code="v">136</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book is based on lectures given at the Global Analysis Research Center (GARC) of Seoul National University in 1999and at Peking University in 1999and 2000. Preliminary versions of the book have been used for various topics courses in analysis for graduate students at York University. We study in this book wavelet transforms and localization operators in the context of infinite-dimensional and square-integrable representations of locally compact and Hausdorffgroups. The wavelet transforms studied in this book, which include the ones that come from the Weyl-Heisenberg group and the well-known affine group, are the building blocks of localization operators. The theme that dominates the book is the spectral theory of wavelet transforms and localization operators in the form of Schatten-von Neumann norm inequalities. Several chap ters are also devoted to the product formulas for concrete localization operators such as Daubechies operators and wavelet multipliers. This book is a natural sequel to the book on pseudo-differential operators [103] and the book on Weyl transforms [102] by the author. Indeed, localization operators on the Weyl-Heisenberg group are Weyl transforms, which are in fact pseudo-differential operators. Details on the perspective and the organization of the book are laid out in the first chapter. This is a book on mathematics and is written for anyone who has taken basic graduate courses in measure theory and functional analysis. Some knowledge of group theory and general topology at the undergraduate level is also assumed</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Pseudodifferentialoperator</subfield><subfield code="0">(DE-588)4047640-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Integraloperator</subfield><subfield code="0">(DE-588)4131247-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lokalisation</subfield><subfield code="0">(DE-588)4195351-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Operatortheorie</subfield><subfield code="0">(DE-588)4075665-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wavelet</subfield><subfield code="0">(DE-588)4215427-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Integraloperator</subfield><subfield code="0">(DE-588)4131247-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Pseudodifferentialoperator</subfield><subfield code="0">(DE-588)4047640-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Wavelet</subfield><subfield code="0">(DE-588)4215427-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Wavelet</subfield><subfield code="0">(DE-588)4215427-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Operatortheorie</subfield><subfield code="0">(DE-588)4075665-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Lokalisation</subfield><subfield code="0">(DE-588)4195351-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-0348-8217-0</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857485</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042422068 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:10Z |
institution | BVB |
isbn | 9783034882170 9783034894784 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857485 |
oclc_num | 863716847 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (VII, 156 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Birkhäuser Basel |
record_format | marc |
series2 | Operator Theory: Advances and Applications |
spelling | Wong, M. W. Verfasser aut Wavelet Transforms and Localization Operators by M. W. Wong Basel Birkhäuser Basel 2002 1 Online-Ressource (VII, 156 p) txt rdacontent c rdamedia cr rdacarrier Operator Theory: Advances and Applications 136 This book is based on lectures given at the Global Analysis Research Center (GARC) of Seoul National University in 1999and at Peking University in 1999and 2000. Preliminary versions of the book have been used for various topics courses in analysis for graduate students at York University. We study in this book wavelet transforms and localization operators in the context of infinite-dimensional and square-integrable representations of locally compact and Hausdorffgroups. The wavelet transforms studied in this book, which include the ones that come from the Weyl-Heisenberg group and the well-known affine group, are the building blocks of localization operators. The theme that dominates the book is the spectral theory of wavelet transforms and localization operators in the form of Schatten-von Neumann norm inequalities. Several chap ters are also devoted to the product formulas for concrete localization operators such as Daubechies operators and wavelet multipliers. This book is a natural sequel to the book on pseudo-differential operators [103] and the book on Weyl transforms [102] by the author. Indeed, localization operators on the Weyl-Heisenberg group are Weyl transforms, which are in fact pseudo-differential operators. Details on the perspective and the organization of the book are laid out in the first chapter. This is a book on mathematics and is written for anyone who has taken basic graduate courses in measure theory and functional analysis. Some knowledge of group theory and general topology at the undergraduate level is also assumed Mathematics Global analysis (Mathematics) Analysis Mathematik Pseudodifferentialoperator (DE-588)4047640-6 gnd rswk-swf Integraloperator (DE-588)4131247-8 gnd rswk-swf Lokalisation (DE-588)4195351-4 gnd rswk-swf Operatortheorie (DE-588)4075665-8 gnd rswk-swf Wavelet (DE-588)4215427-3 gnd rswk-swf Integraloperator (DE-588)4131247-8 s Pseudodifferentialoperator (DE-588)4047640-6 s Wavelet (DE-588)4215427-3 s 1\p DE-604 Operatortheorie (DE-588)4075665-8 s Lokalisation (DE-588)4195351-4 s 2\p DE-604 https://doi.org/10.1007/978-3-0348-8217-0 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Wong, M. W. Wavelet Transforms and Localization Operators Mathematics Global analysis (Mathematics) Analysis Mathematik Pseudodifferentialoperator (DE-588)4047640-6 gnd Integraloperator (DE-588)4131247-8 gnd Lokalisation (DE-588)4195351-4 gnd Operatortheorie (DE-588)4075665-8 gnd Wavelet (DE-588)4215427-3 gnd |
subject_GND | (DE-588)4047640-6 (DE-588)4131247-8 (DE-588)4195351-4 (DE-588)4075665-8 (DE-588)4215427-3 |
title | Wavelet Transforms and Localization Operators |
title_auth | Wavelet Transforms and Localization Operators |
title_exact_search | Wavelet Transforms and Localization Operators |
title_full | Wavelet Transforms and Localization Operators by M. W. Wong |
title_fullStr | Wavelet Transforms and Localization Operators by M. W. Wong |
title_full_unstemmed | Wavelet Transforms and Localization Operators by M. W. Wong |
title_short | Wavelet Transforms and Localization Operators |
title_sort | wavelet transforms and localization operators |
topic | Mathematics Global analysis (Mathematics) Analysis Mathematik Pseudodifferentialoperator (DE-588)4047640-6 gnd Integraloperator (DE-588)4131247-8 gnd Lokalisation (DE-588)4195351-4 gnd Operatortheorie (DE-588)4075665-8 gnd Wavelet (DE-588)4215427-3 gnd |
topic_facet | Mathematics Global analysis (Mathematics) Analysis Mathematik Pseudodifferentialoperator Integraloperator Lokalisation Operatortheorie Wavelet |
url | https://doi.org/10.1007/978-3-0348-8217-0 |
work_keys_str_mv | AT wongmw wavelettransformsandlocalizationoperators |