Introduction to the Theory of Toeplitz Operators with Infinite Index:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Basel
Birkhäuser Basel
2002
|
Schriftenreihe: | Operator Theory: Advances and Applications
137 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | We offer the reader of this book some specimens of "infinity" that we seized from the "mathematical jungle" and trapped within the solid cage of analysis The creation of the theory of singular integral equations in the mid 20th century is associated with the names of N.I. Muskhelishvili, F.D. Gakhov, N.P. Vekua and their numerous students and followers and is marked by the fact that it relied principally on methods of complex analysis. In the early 1960s, the development of this theory received a powerful impulse from the ideas and methods of functional analysis that were then brought into the picture. Its modern architecture is due to a constellation of brilliant mathematicians and the scientific collectives that they produced (S.G. Mikhlin, M.G. Krein, B.V. Khvedelidze, I. Gohberg, LB. Simonenko, A. Devinatz, H. Widom, R.G. Douglas, D. Sarason, A.P. Calderon, S. Prossdorf, B. Silbermann, and others). In the ensuing period, the Fredholm theory of singular integral operators with a finite index was completed in its main aspects in wide classes of Banach and Frechet spaces |
Beschreibung: | 1 Online-Ressource (XII, 300 p) |
ISBN: | 9783034882132 9783034894760 |
DOI: | 10.1007/978-3-0348-8213-2 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042422066 | ||
003 | DE-604 | ||
005 | 20211216 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2002 |||| o||u| ||||||eng d | ||
020 | |a 9783034882132 |c Online |9 978-3-0348-8213-2 | ||
020 | |a 9783034894760 |c Print |9 978-3-0348-9476-0 | ||
024 | 7 | |a 10.1007/978-3-0348-8213-2 |2 doi | |
035 | |a (OCoLC)1184442496 | ||
035 | |a (DE-599)BVBBV042422066 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 510 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Dybin, Vladimir |e Verfasser |4 aut | |
245 | 1 | 0 | |a Introduction to the Theory of Toeplitz Operators with Infinite Index |c by Vladimir Dybin, Sergei M. Grudsky |
264 | 1 | |a Basel |b Birkhäuser Basel |c 2002 | |
300 | |a 1 Online-Ressource (XII, 300 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Operator Theory: Advances and Applications |v 137 | |
500 | |a We offer the reader of this book some specimens of "infinity" that we seized from the "mathematical jungle" and trapped within the solid cage of analysis The creation of the theory of singular integral equations in the mid 20th century is associated with the names of N.I. Muskhelishvili, F.D. Gakhov, N.P. Vekua and their numerous students and followers and is marked by the fact that it relied principally on methods of complex analysis. In the early 1960s, the development of this theory received a powerful impulse from the ideas and methods of functional analysis that were then brought into the picture. Its modern architecture is due to a constellation of brilliant mathematicians and the scientific collectives that they produced (S.G. Mikhlin, M.G. Krein, B.V. Khvedelidze, I. Gohberg, LB. Simonenko, A. Devinatz, H. Widom, R.G. Douglas, D. Sarason, A.P. Calderon, S. Prossdorf, B. Silbermann, and others). In the ensuing period, the Fredholm theory of singular integral operators with a finite index was completed in its main aspects in wide classes of Banach and Frechet spaces | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Mathematics, general | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Singulärer Integraloperator |0 (DE-588)4131249-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Toeplitz-Operator |0 (DE-588)4191521-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Singulärer Integraloperator |0 (DE-588)4131249-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Toeplitz-Operator |0 (DE-588)4191521-5 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Grudsky, Sergei M. |e Sonstige |4 oth | |
810 | 2 | |a Operator Theory |t Advances and Applications |v 137 |w (DE-604)BV035421307 |9 137 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-0348-8213-2 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857483 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153095975862272 |
---|---|
any_adam_object | |
author | Dybin, Vladimir |
author_facet | Dybin, Vladimir |
author_role | aut |
author_sort | Dybin, Vladimir |
author_variant | v d vd |
building | Verbundindex |
bvnumber | BV042422066 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184442496 (DE-599)BVBBV042422066 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-0348-8213-2 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03021nmm a2200517zcb4500</leader><controlfield tag="001">BV042422066</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20211216 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2002 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034882132</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-0348-8213-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034894760</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-0348-9476-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-0348-8213-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184442496</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422066</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dybin, Vladimir</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to the Theory of Toeplitz Operators with Infinite Index</subfield><subfield code="c">by Vladimir Dybin, Sergei M. Grudsky</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">Birkhäuser Basel</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 300 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Operator Theory: Advances and Applications</subfield><subfield code="v">137</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">We offer the reader of this book some specimens of "infinity" that we seized from the "mathematical jungle" and trapped within the solid cage of analysis The creation of the theory of singular integral equations in the mid 20th century is associated with the names of N.I. Muskhelishvili, F.D. Gakhov, N.P. Vekua and their numerous students and followers and is marked by the fact that it relied principally on methods of complex analysis. In the early 1960s, the development of this theory received a powerful impulse from the ideas and methods of functional analysis that were then brought into the picture. Its modern architecture is due to a constellation of brilliant mathematicians and the scientific collectives that they produced (S.G. Mikhlin, M.G. Krein, B.V. Khvedelidze, I. Gohberg, LB. Simonenko, A. Devinatz, H. Widom, R.G. Douglas, D. Sarason, A.P. Calderon, S. Prossdorf, B. Silbermann, and others). In the ensuing period, the Fredholm theory of singular integral operators with a finite index was completed in its main aspects in wide classes of Banach and Frechet spaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Singulärer Integraloperator</subfield><subfield code="0">(DE-588)4131249-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Toeplitz-Operator</subfield><subfield code="0">(DE-588)4191521-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Singulärer Integraloperator</subfield><subfield code="0">(DE-588)4131249-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Toeplitz-Operator</subfield><subfield code="0">(DE-588)4191521-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Grudsky, Sergei M.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Operator Theory</subfield><subfield code="t">Advances and Applications</subfield><subfield code="v">137</subfield><subfield code="w">(DE-604)BV035421307</subfield><subfield code="9">137</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-0348-8213-2</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857483</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042422066 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:10Z |
institution | BVB |
isbn | 9783034882132 9783034894760 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857483 |
oclc_num | 1184442496 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XII, 300 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Birkhäuser Basel |
record_format | marc |
series2 | Operator Theory: Advances and Applications |
spelling | Dybin, Vladimir Verfasser aut Introduction to the Theory of Toeplitz Operators with Infinite Index by Vladimir Dybin, Sergei M. Grudsky Basel Birkhäuser Basel 2002 1 Online-Ressource (XII, 300 p) txt rdacontent c rdamedia cr rdacarrier Operator Theory: Advances and Applications 137 We offer the reader of this book some specimens of "infinity" that we seized from the "mathematical jungle" and trapped within the solid cage of analysis The creation of the theory of singular integral equations in the mid 20th century is associated with the names of N.I. Muskhelishvili, F.D. Gakhov, N.P. Vekua and their numerous students and followers and is marked by the fact that it relied principally on methods of complex analysis. In the early 1960s, the development of this theory received a powerful impulse from the ideas and methods of functional analysis that were then brought into the picture. Its modern architecture is due to a constellation of brilliant mathematicians and the scientific collectives that they produced (S.G. Mikhlin, M.G. Krein, B.V. Khvedelidze, I. Gohberg, LB. Simonenko, A. Devinatz, H. Widom, R.G. Douglas, D. Sarason, A.P. Calderon, S. Prossdorf, B. Silbermann, and others). In the ensuing period, the Fredholm theory of singular integral operators with a finite index was completed in its main aspects in wide classes of Banach and Frechet spaces Mathematics Mathematics, general Mathematik Singulärer Integraloperator (DE-588)4131249-1 gnd rswk-swf Toeplitz-Operator (DE-588)4191521-5 gnd rswk-swf Singulärer Integraloperator (DE-588)4131249-1 s 1\p DE-604 Toeplitz-Operator (DE-588)4191521-5 s 2\p DE-604 Grudsky, Sergei M. Sonstige oth Operator Theory Advances and Applications 137 (DE-604)BV035421307 137 https://doi.org/10.1007/978-3-0348-8213-2 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Dybin, Vladimir Introduction to the Theory of Toeplitz Operators with Infinite Index Mathematics Mathematics, general Mathematik Singulärer Integraloperator (DE-588)4131249-1 gnd Toeplitz-Operator (DE-588)4191521-5 gnd |
subject_GND | (DE-588)4131249-1 (DE-588)4191521-5 |
title | Introduction to the Theory of Toeplitz Operators with Infinite Index |
title_auth | Introduction to the Theory of Toeplitz Operators with Infinite Index |
title_exact_search | Introduction to the Theory of Toeplitz Operators with Infinite Index |
title_full | Introduction to the Theory of Toeplitz Operators with Infinite Index by Vladimir Dybin, Sergei M. Grudsky |
title_fullStr | Introduction to the Theory of Toeplitz Operators with Infinite Index by Vladimir Dybin, Sergei M. Grudsky |
title_full_unstemmed | Introduction to the Theory of Toeplitz Operators with Infinite Index by Vladimir Dybin, Sergei M. Grudsky |
title_short | Introduction to the Theory of Toeplitz Operators with Infinite Index |
title_sort | introduction to the theory of toeplitz operators with infinite index |
topic | Mathematics Mathematics, general Mathematik Singulärer Integraloperator (DE-588)4131249-1 gnd Toeplitz-Operator (DE-588)4191521-5 gnd |
topic_facet | Mathematics Mathematics, general Mathematik Singulärer Integraloperator Toeplitz-Operator |
url | https://doi.org/10.1007/978-3-0348-8213-2 |
volume_link | (DE-604)BV035421307 |
work_keys_str_mv | AT dybinvladimir introductiontothetheoryoftoeplitzoperatorswithinfiniteindex AT grudskysergeim introductiontothetheoryoftoeplitzoperatorswithinfiniteindex |