Lectures on Algebraic Quantum Groups:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Basel
Birkhäuser Basel
2002
|
Schriftenreihe: | Advanced Courses in Mathematics CRM Barcelona, Institut d’Estudis Catalans Centre de Recerca Matemàtica
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | In September 2000, at the Centre de Recerca Matematica in Barcelona, we pre sented a 30-hour Advanced Course on Algebraic Quantum Groups. After the course, we expanded and smoothed out the material presented in the lectures and inte grated it with the background material that we had prepared for the participants; this volume is the result. As our title implies, our aim in the course and in this text is to treat selected algebraic aspects of the subject of quantum groups. Sev eral of the words in the previous sentence call for some elaboration. First, we mean to convey several points by the term 'algebraic' - that we are concerned with algebraic objects, the quantized analogues of 'classical' algebraic objects (in contrast, for example, to quantized versions of continuous function algebras on compact groups); that we are interested in algebraic aspects of the structure of these objects and their representations (in contrast, for example, to applications to other areas of mathematics); and that our tools will be drawn primarily from noncommutative algebra, representation theory, and algebraic geometry. Second, the term 'quantum groups' itself. This label is attached to a large and rapidly diversifying field of mathematics and mathematical physics, originally launched by developments around 1980 in theoretical physics and statistical me chanics. It is a field driven much more by examples than by axioms, and so resists attempts at concise description (but see Chapter 1. 1 and the references therein) |
Beschreibung: | 1 Online-Ressource (IX, 348p) |
ISBN: | 9783034882057 9783764367145 |
DOI: | 10.1007/978-3-0348-8205-7 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042422062 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2002 |||| o||u| ||||||eng d | ||
020 | |a 9783034882057 |c Online |9 978-3-0348-8205-7 | ||
020 | |a 9783764367145 |c Print |9 978-3-7643-6714-5 | ||
024 | 7 | |a 10.1007/978-3-0348-8205-7 |2 doi | |
035 | |a (OCoLC)869868433 | ||
035 | |a (DE-599)BVBBV042422062 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 512.55 |2 23 | |
082 | 0 | |a 512.482 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Brown, Ken A. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Lectures on Algebraic Quantum Groups |c by Ken A. Brown, Ken R. Goodearl |
264 | 1 | |a Basel |b Birkhäuser Basel |c 2002 | |
300 | |a 1 Online-Ressource (IX, 348p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Advanced Courses in Mathematics CRM Barcelona, Institut d’Estudis Catalans Centre de Recerca Matemàtica | |
500 | |a In September 2000, at the Centre de Recerca Matematica in Barcelona, we pre sented a 30-hour Advanced Course on Algebraic Quantum Groups. After the course, we expanded and smoothed out the material presented in the lectures and inte grated it with the background material that we had prepared for the participants; this volume is the result. As our title implies, our aim in the course and in this text is to treat selected algebraic aspects of the subject of quantum groups. Sev eral of the words in the previous sentence call for some elaboration. First, we mean to convey several points by the term 'algebraic' - that we are concerned with algebraic objects, the quantized analogues of 'classical' algebraic objects (in contrast, for example, to quantized versions of continuous function algebras on compact groups); that we are interested in algebraic aspects of the structure of these objects and their representations (in contrast, for example, to applications to other areas of mathematics); and that our tools will be drawn primarily from noncommutative algebra, representation theory, and algebraic geometry. Second, the term 'quantum groups' itself. This label is attached to a large and rapidly diversifying field of mathematics and mathematical physics, originally launched by developments around 1980 in theoretical physics and statistical me chanics. It is a field driven much more by examples than by axioms, and so resists attempts at concise description (but see Chapter 1. 1 and the references therein) | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Group theory | |
650 | 4 | |a Topological Groups | |
650 | 4 | |a Topological Groups, Lie Groups | |
650 | 4 | |a Group Theory and Generalizations | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Quantengruppe |0 (DE-588)4252437-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Quantengruppe |0 (DE-588)4252437-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Goodearl, Ken R. |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-0348-8205-7 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857479 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153095963279360 |
---|---|
any_adam_object | |
author | Brown, Ken A. |
author_facet | Brown, Ken A. |
author_role | aut |
author_sort | Brown, Ken A. |
author_variant | k a b ka kab |
building | Verbundindex |
bvnumber | BV042422062 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)869868433 (DE-599)BVBBV042422062 |
dewey-full | 512.55 512.482 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.55 512.482 |
dewey-search | 512.55 512.482 |
dewey-sort | 3512.55 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-0348-8205-7 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03273nmm a2200505zc 4500</leader><controlfield tag="001">BV042422062</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2002 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034882057</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-0348-8205-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783764367145</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-7643-6714-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-0348-8205-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)869868433</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422062</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.55</subfield><subfield code="2">23</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.482</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Brown, Ken A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lectures on Algebraic Quantum Groups</subfield><subfield code="c">by Ken A. Brown, Ken R. Goodearl</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">Birkhäuser Basel</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (IX, 348p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Advanced Courses in Mathematics CRM Barcelona, Institut d’Estudis Catalans Centre de Recerca Matemàtica</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">In September 2000, at the Centre de Recerca Matematica in Barcelona, we pre sented a 30-hour Advanced Course on Algebraic Quantum Groups. After the course, we expanded and smoothed out the material presented in the lectures and inte grated it with the background material that we had prepared for the participants; this volume is the result. As our title implies, our aim in the course and in this text is to treat selected algebraic aspects of the subject of quantum groups. Sev eral of the words in the previous sentence call for some elaboration. First, we mean to convey several points by the term 'algebraic' - that we are concerned with algebraic objects, the quantized analogues of 'classical' algebraic objects (in contrast, for example, to quantized versions of continuous function algebras on compact groups); that we are interested in algebraic aspects of the structure of these objects and their representations (in contrast, for example, to applications to other areas of mathematics); and that our tools will be drawn primarily from noncommutative algebra, representation theory, and algebraic geometry. Second, the term 'quantum groups' itself. This label is attached to a large and rapidly diversifying field of mathematics and mathematical physics, originally launched by developments around 1980 in theoretical physics and statistical me chanics. It is a field driven much more by examples than by axioms, and so resists attempts at concise description (but see Chapter 1. 1 and the references therein)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological Groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological Groups, Lie Groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group Theory and Generalizations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantengruppe</subfield><subfield code="0">(DE-588)4252437-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Quantengruppe</subfield><subfield code="0">(DE-588)4252437-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Goodearl, Ken R.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-0348-8205-7</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857479</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042422062 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:10Z |
institution | BVB |
isbn | 9783034882057 9783764367145 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857479 |
oclc_num | 869868433 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (IX, 348p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Birkhäuser Basel |
record_format | marc |
series2 | Advanced Courses in Mathematics CRM Barcelona, Institut d’Estudis Catalans Centre de Recerca Matemàtica |
spelling | Brown, Ken A. Verfasser aut Lectures on Algebraic Quantum Groups by Ken A. Brown, Ken R. Goodearl Basel Birkhäuser Basel 2002 1 Online-Ressource (IX, 348p) txt rdacontent c rdamedia cr rdacarrier Advanced Courses in Mathematics CRM Barcelona, Institut d’Estudis Catalans Centre de Recerca Matemàtica In September 2000, at the Centre de Recerca Matematica in Barcelona, we pre sented a 30-hour Advanced Course on Algebraic Quantum Groups. After the course, we expanded and smoothed out the material presented in the lectures and inte grated it with the background material that we had prepared for the participants; this volume is the result. As our title implies, our aim in the course and in this text is to treat selected algebraic aspects of the subject of quantum groups. Sev eral of the words in the previous sentence call for some elaboration. First, we mean to convey several points by the term 'algebraic' - that we are concerned with algebraic objects, the quantized analogues of 'classical' algebraic objects (in contrast, for example, to quantized versions of continuous function algebras on compact groups); that we are interested in algebraic aspects of the structure of these objects and their representations (in contrast, for example, to applications to other areas of mathematics); and that our tools will be drawn primarily from noncommutative algebra, representation theory, and algebraic geometry. Second, the term 'quantum groups' itself. This label is attached to a large and rapidly diversifying field of mathematics and mathematical physics, originally launched by developments around 1980 in theoretical physics and statistical me chanics. It is a field driven much more by examples than by axioms, and so resists attempts at concise description (but see Chapter 1. 1 and the references therein) Mathematics Group theory Topological Groups Topological Groups, Lie Groups Group Theory and Generalizations Mathematik Quantengruppe (DE-588)4252437-4 gnd rswk-swf Quantengruppe (DE-588)4252437-4 s 1\p DE-604 Goodearl, Ken R. Sonstige oth https://doi.org/10.1007/978-3-0348-8205-7 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Brown, Ken A. Lectures on Algebraic Quantum Groups Mathematics Group theory Topological Groups Topological Groups, Lie Groups Group Theory and Generalizations Mathematik Quantengruppe (DE-588)4252437-4 gnd |
subject_GND | (DE-588)4252437-4 |
title | Lectures on Algebraic Quantum Groups |
title_auth | Lectures on Algebraic Quantum Groups |
title_exact_search | Lectures on Algebraic Quantum Groups |
title_full | Lectures on Algebraic Quantum Groups by Ken A. Brown, Ken R. Goodearl |
title_fullStr | Lectures on Algebraic Quantum Groups by Ken A. Brown, Ken R. Goodearl |
title_full_unstemmed | Lectures on Algebraic Quantum Groups by Ken A. Brown, Ken R. Goodearl |
title_short | Lectures on Algebraic Quantum Groups |
title_sort | lectures on algebraic quantum groups |
topic | Mathematics Group theory Topological Groups Topological Groups, Lie Groups Group Theory and Generalizations Mathematik Quantengruppe (DE-588)4252437-4 gnd |
topic_facet | Mathematics Group theory Topological Groups Topological Groups, Lie Groups Group Theory and Generalizations Mathematik Quantengruppe |
url | https://doi.org/10.1007/978-3-0348-8205-7 |
work_keys_str_mv | AT brownkena lecturesonalgebraicquantumgroups AT goodearlkenr lecturesonalgebraicquantumgroups |