Introduction to the Baum-Connes Conjecture:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Basel
Birkhäuser Basel
2002
|
Schriftenreihe: | Lectures in Mathematics ETH Zürich
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | A quick description of the conjecture The Baum-Connes conjecture is part of Alain Connes' tantalizing "noncommutative geometry" programme [18]. It is in some sense the most "commutative" part of this programme, since it bridges with classical geometry and topology. Let r be a countable group. The Baum-Connes conjecture identifies two objects associated with r, one analytical and one geometrical/topological. The right-hand side of the conjecture, or analytical side, involves the Ktheory of the reduced C*-algebra c;r, which is the C*-algebra generated by r in 2 its left regular representation on the Hilbert space C(r). The K-theory used here, Ki(C;r) for i = 0, 1, is the usual topological K-theory for Banach algebras, as described e.g. in [85]. The left-hand side of the conjecture, or geometrical/topological side RKf(Er) (i=O,I), is the r-equivariant K-homology with r-compact supports of the classifying space Er for proper actions of r. If r is torsion-free, this is the same as the K-homology (with compact supports) of the classifying space Br (or K(r,l) Eilenberg-Mac Lane space). This can be defined purely homotopically |
Beschreibung: | 1 Online-Ressource (X, 104p) |
ISBN: | 9783034881876 9783764367060 |
DOI: | 10.1007/978-3-0348-8187-6 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042422056 | ||
003 | DE-604 | ||
005 | 20180117 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2002 |||| o||u| ||||||eng d | ||
020 | |a 9783034881876 |c Online |9 978-3-0348-8187-6 | ||
020 | |a 9783764367060 |c Print |9 978-3-7643-6706-0 | ||
024 | 7 | |a 10.1007/978-3-0348-8187-6 |2 doi | |
035 | |a (OCoLC)1184366464 | ||
035 | |a (DE-599)BVBBV042422056 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 512.66 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Valette, Alain |e Verfasser |4 aut | |
245 | 1 | 0 | |a Introduction to the Baum-Connes Conjecture |c by Alain Valette |
264 | 1 | |a Basel |b Birkhäuser Basel |c 2002 | |
300 | |a 1 Online-Ressource (X, 104p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Lectures in Mathematics ETH Zürich | |
500 | |a A quick description of the conjecture The Baum-Connes conjecture is part of Alain Connes' tantalizing "noncommutative geometry" programme [18]. It is in some sense the most "commutative" part of this programme, since it bridges with classical geometry and topology. Let r be a countable group. The Baum-Connes conjecture identifies two objects associated with r, one analytical and one geometrical/topological. The right-hand side of the conjecture, or analytical side, involves the Ktheory of the reduced C*-algebra c;r, which is the C*-algebra generated by r in 2 its left regular representation on the Hilbert space C(r). The K-theory used here, Ki(C;r) for i = 0, 1, is the usual topological K-theory for Banach algebras, as described e.g. in [85]. The left-hand side of the conjecture, or geometrical/topological side RKf(Er) (i=O,I), is the r-equivariant K-homology with r-compact supports of the classifying space Er for proper actions of r. If r is torsion-free, this is the same as the K-homology (with compact supports) of the classifying space Br (or K(r,l) Eilenberg-Mac Lane space). This can be defined purely homotopically | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Group theory | |
650 | 4 | |a K-theory | |
650 | 4 | |a Topological Groups | |
650 | 4 | |a K-Theory | |
650 | 4 | |a Topological Groups, Lie Groups | |
650 | 4 | |a Group Theory and Generalizations | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a KK-Theorie |0 (DE-588)4273845-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Baum-Connes-Vermutung |0 (DE-588)4688506-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Baum-Connes-Vermutung |0 (DE-588)4688506-7 |D s |
689 | 0 | 1 | |a KK-Theorie |0 (DE-588)4273845-3 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-0348-8187-6 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857473 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153095923433472 |
---|---|
any_adam_object | |
author | Valette, Alain |
author_facet | Valette, Alain |
author_role | aut |
author_sort | Valette, Alain |
author_variant | a v av |
building | Verbundindex |
bvnumber | BV042422056 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184366464 (DE-599)BVBBV042422056 |
dewey-full | 512.66 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.66 |
dewey-search | 512.66 |
dewey-sort | 3512.66 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-0348-8187-6 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02903nmm a2200529zc 4500</leader><controlfield tag="001">BV042422056</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180117 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2002 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034881876</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-0348-8187-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783764367060</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-7643-6706-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-0348-8187-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184366464</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422056</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.66</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Valette, Alain</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to the Baum-Connes Conjecture</subfield><subfield code="c">by Alain Valette</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">Birkhäuser Basel</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 104p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Lectures in Mathematics ETH Zürich</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">A quick description of the conjecture The Baum-Connes conjecture is part of Alain Connes' tantalizing "noncommutative geometry" programme [18]. It is in some sense the most "commutative" part of this programme, since it bridges with classical geometry and topology. Let r be a countable group. The Baum-Connes conjecture identifies two objects associated with r, one analytical and one geometrical/topological. The right-hand side of the conjecture, or analytical side, involves the Ktheory of the reduced C*-algebra c;r, which is the C*-algebra generated by r in 2 its left regular representation on the Hilbert space C(r). The K-theory used here, Ki(C;r) for i = 0, 1, is the usual topological K-theory for Banach algebras, as described e.g. in [85]. The left-hand side of the conjecture, or geometrical/topological side RKf(Er) (i=O,I), is the r-equivariant K-homology with r-compact supports of the classifying space Er for proper actions of r. If r is torsion-free, this is the same as the K-homology (with compact supports) of the classifying space Br (or K(r,l) Eilenberg-Mac Lane space). This can be defined purely homotopically</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">K-theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological Groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">K-Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological Groups, Lie Groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group Theory and Generalizations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">KK-Theorie</subfield><subfield code="0">(DE-588)4273845-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Baum-Connes-Vermutung</subfield><subfield code="0">(DE-588)4688506-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Baum-Connes-Vermutung</subfield><subfield code="0">(DE-588)4688506-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">KK-Theorie</subfield><subfield code="0">(DE-588)4273845-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-0348-8187-6</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857473</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042422056 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:10Z |
institution | BVB |
isbn | 9783034881876 9783764367060 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857473 |
oclc_num | 1184366464 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (X, 104p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Birkhäuser Basel |
record_format | marc |
series2 | Lectures in Mathematics ETH Zürich |
spelling | Valette, Alain Verfasser aut Introduction to the Baum-Connes Conjecture by Alain Valette Basel Birkhäuser Basel 2002 1 Online-Ressource (X, 104p) txt rdacontent c rdamedia cr rdacarrier Lectures in Mathematics ETH Zürich A quick description of the conjecture The Baum-Connes conjecture is part of Alain Connes' tantalizing "noncommutative geometry" programme [18]. It is in some sense the most "commutative" part of this programme, since it bridges with classical geometry and topology. Let r be a countable group. The Baum-Connes conjecture identifies two objects associated with r, one analytical and one geometrical/topological. The right-hand side of the conjecture, or analytical side, involves the Ktheory of the reduced C*-algebra c;r, which is the C*-algebra generated by r in 2 its left regular representation on the Hilbert space C(r). The K-theory used here, Ki(C;r) for i = 0, 1, is the usual topological K-theory for Banach algebras, as described e.g. in [85]. The left-hand side of the conjecture, or geometrical/topological side RKf(Er) (i=O,I), is the r-equivariant K-homology with r-compact supports of the classifying space Er for proper actions of r. If r is torsion-free, this is the same as the K-homology (with compact supports) of the classifying space Br (or K(r,l) Eilenberg-Mac Lane space). This can be defined purely homotopically Mathematics Group theory K-theory Topological Groups K-Theory Topological Groups, Lie Groups Group Theory and Generalizations Mathematik KK-Theorie (DE-588)4273845-3 gnd rswk-swf Baum-Connes-Vermutung (DE-588)4688506-7 gnd rswk-swf Baum-Connes-Vermutung (DE-588)4688506-7 s KK-Theorie (DE-588)4273845-3 s 1\p DE-604 https://doi.org/10.1007/978-3-0348-8187-6 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Valette, Alain Introduction to the Baum-Connes Conjecture Mathematics Group theory K-theory Topological Groups K-Theory Topological Groups, Lie Groups Group Theory and Generalizations Mathematik KK-Theorie (DE-588)4273845-3 gnd Baum-Connes-Vermutung (DE-588)4688506-7 gnd |
subject_GND | (DE-588)4273845-3 (DE-588)4688506-7 |
title | Introduction to the Baum-Connes Conjecture |
title_auth | Introduction to the Baum-Connes Conjecture |
title_exact_search | Introduction to the Baum-Connes Conjecture |
title_full | Introduction to the Baum-Connes Conjecture by Alain Valette |
title_fullStr | Introduction to the Baum-Connes Conjecture by Alain Valette |
title_full_unstemmed | Introduction to the Baum-Connes Conjecture by Alain Valette |
title_short | Introduction to the Baum-Connes Conjecture |
title_sort | introduction to the baum connes conjecture |
topic | Mathematics Group theory K-theory Topological Groups K-Theory Topological Groups, Lie Groups Group Theory and Generalizations Mathematik KK-Theorie (DE-588)4273845-3 gnd Baum-Connes-Vermutung (DE-588)4688506-7 gnd |
topic_facet | Mathematics Group theory K-theory Topological Groups K-Theory Topological Groups, Lie Groups Group Theory and Generalizations Mathematik KK-Theorie Baum-Connes-Vermutung |
url | https://doi.org/10.1007/978-3-0348-8187-6 |
work_keys_str_mv | AT valettealain introductiontothebaumconnesconjecture |