Hyperbolic Systems of Conservation Laws: The Theory of Classical and Nonclassical Shock Waves
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Basel
Birkhäuser Basel
2002
|
Schriftenreihe: | Lectures in Mathematics. ETH Zürich
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This set of lecture notes was written for a Nachdiplom-Vorlesungen course given at the Forschungsinstitut fUr Mathematik (FIM), ETH Zurich, during the Fall Semester 2000. I would like to thank the faculty of the Mathematics Department, and especially Rolf Jeltsch and Michael Struwe, for giving me such a great opportunity to deliver the lectures in a very stimulating environment. Part of this material was also taught earlier as an advanced graduate course at the Ecole Poly technique (Palaiseau) during the years 1995-99, at the Instituto Superior Tecnico (Lisbon) in the Spring 1998, and at the University of Wisconsin (Madison) in the Fall 1998. This project started in the Summer 1995 when I gave a series of lectures at the Tata Institute of Fundamental Research (Bangalore). One main objective in this course is to provide a self-contained presentation of the well-posedness theory for nonlinear hyperbolic systems of first-order partial differential equations in divergence form, also called hyperbolic systems of con servation laws. Such equations arise in many areas of continuum physics when fundamental balance laws are formulated (for the mass, momentum, total energy . . . of a fluid or solid material) and small-scale mechanisms can be neglected (which are induced by viscosity, capillarity, heat conduction, Hall effect . . . ). Solutions to hyper bolic conservation laws exhibit singularities (shock waves), which appear in finite time even from smooth initial data |
Beschreibung: | 1 Online-Ressource (X, 294p) |
ISBN: | 9783034881500 9783764366872 |
DOI: | 10.1007/978-3-0348-8150-0 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042422045 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2002 |||| o||u| ||||||eng d | ||
020 | |a 9783034881500 |c Online |9 978-3-0348-8150-0 | ||
020 | |a 9783764366872 |c Print |9 978-3-7643-6687-2 | ||
024 | 7 | |a 10.1007/978-3-0348-8150-0 |2 doi | |
035 | |a (OCoLC)869853017 | ||
035 | |a (DE-599)BVBBV042422045 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515.353 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a LeFloch, Philippe G. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Hyperbolic Systems of Conservation Laws |b The Theory of Classical and Nonclassical Shock Waves |c by Philippe G. LeFloch |
264 | 1 | |a Basel |b Birkhäuser Basel |c 2002 | |
300 | |a 1 Online-Ressource (X, 294p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Lectures in Mathematics. ETH Zürich | |
500 | |a This set of lecture notes was written for a Nachdiplom-Vorlesungen course given at the Forschungsinstitut fUr Mathematik (FIM), ETH Zurich, during the Fall Semester 2000. I would like to thank the faculty of the Mathematics Department, and especially Rolf Jeltsch and Michael Struwe, for giving me such a great opportunity to deliver the lectures in a very stimulating environment. Part of this material was also taught earlier as an advanced graduate course at the Ecole Poly technique (Palaiseau) during the years 1995-99, at the Instituto Superior Tecnico (Lisbon) in the Spring 1998, and at the University of Wisconsin (Madison) in the Fall 1998. This project started in the Summer 1995 when I gave a series of lectures at the Tata Institute of Fundamental Research (Bangalore). One main objective in this course is to provide a self-contained presentation of the well-posedness theory for nonlinear hyperbolic systems of first-order partial differential equations in divergence form, also called hyperbolic systems of con servation laws. Such equations arise in many areas of continuum physics when fundamental balance laws are formulated (for the mass, momentum, total energy . . . of a fluid or solid material) and small-scale mechanisms can be neglected (which are induced by viscosity, capillarity, heat conduction, Hall effect . . . ). Solutions to hyper bolic conservation laws exhibit singularities (shock waves), which appear in finite time even from smooth initial data | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Differential equations, partial | |
650 | 4 | |a Partial Differential Equations | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Nichtlineares hyperbolisches System |0 (DE-588)4191896-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Erhaltungssatz |0 (DE-588)4131214-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hyperbolische Differentialgleichung |0 (DE-588)4131213-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Erhaltungssatz |0 (DE-588)4131214-4 |D s |
689 | 0 | 1 | |a Nichtlineares hyperbolisches System |0 (DE-588)4191896-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Hyperbolische Differentialgleichung |0 (DE-588)4131213-2 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-0348-8150-0 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857462 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153095908753408 |
---|---|
any_adam_object | |
author | LeFloch, Philippe G. |
author_facet | LeFloch, Philippe G. |
author_role | aut |
author_sort | LeFloch, Philippe G. |
author_variant | p g l pg pgl |
building | Verbundindex |
bvnumber | BV042422045 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)869853017 (DE-599)BVBBV042422045 |
dewey-full | 515.353 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.353 |
dewey-search | 515.353 |
dewey-sort | 3515.353 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-0348-8150-0 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03511nmm a2200529zc 4500</leader><controlfield tag="001">BV042422045</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2002 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034881500</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-0348-8150-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783764366872</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-7643-6687-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-0348-8150-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)869853017</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422045</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.353</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">LeFloch, Philippe G.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hyperbolic Systems of Conservation Laws</subfield><subfield code="b">The Theory of Classical and Nonclassical Shock Waves</subfield><subfield code="c">by Philippe G. LeFloch</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">Birkhäuser Basel</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 294p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Lectures in Mathematics. ETH Zürich</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This set of lecture notes was written for a Nachdiplom-Vorlesungen course given at the Forschungsinstitut fUr Mathematik (FIM), ETH Zurich, during the Fall Semester 2000. I would like to thank the faculty of the Mathematics Department, and especially Rolf Jeltsch and Michael Struwe, for giving me such a great opportunity to deliver the lectures in a very stimulating environment. Part of this material was also taught earlier as an advanced graduate course at the Ecole Poly technique (Palaiseau) during the years 1995-99, at the Instituto Superior Tecnico (Lisbon) in the Spring 1998, and at the University of Wisconsin (Madison) in the Fall 1998. This project started in the Summer 1995 when I gave a series of lectures at the Tata Institute of Fundamental Research (Bangalore). One main objective in this course is to provide a self-contained presentation of the well-posedness theory for nonlinear hyperbolic systems of first-order partial differential equations in divergence form, also called hyperbolic systems of con servation laws. Such equations arise in many areas of continuum physics when fundamental balance laws are formulated (for the mass, momentum, total energy . . . of a fluid or solid material) and small-scale mechanisms can be neglected (which are induced by viscosity, capillarity, heat conduction, Hall effect . . . ). Solutions to hyper bolic conservation laws exhibit singularities (shock waves), which appear in finite time even from smooth initial data</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineares hyperbolisches System</subfield><subfield code="0">(DE-588)4191896-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Erhaltungssatz</subfield><subfield code="0">(DE-588)4131214-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hyperbolische Differentialgleichung</subfield><subfield code="0">(DE-588)4131213-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Erhaltungssatz</subfield><subfield code="0">(DE-588)4131214-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Nichtlineares hyperbolisches System</subfield><subfield code="0">(DE-588)4191896-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Hyperbolische Differentialgleichung</subfield><subfield code="0">(DE-588)4131213-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-0348-8150-0</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857462</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042422045 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:10Z |
institution | BVB |
isbn | 9783034881500 9783764366872 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857462 |
oclc_num | 869853017 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (X, 294p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Birkhäuser Basel |
record_format | marc |
series2 | Lectures in Mathematics. ETH Zürich |
spelling | LeFloch, Philippe G. Verfasser aut Hyperbolic Systems of Conservation Laws The Theory of Classical and Nonclassical Shock Waves by Philippe G. LeFloch Basel Birkhäuser Basel 2002 1 Online-Ressource (X, 294p) txt rdacontent c rdamedia cr rdacarrier Lectures in Mathematics. ETH Zürich This set of lecture notes was written for a Nachdiplom-Vorlesungen course given at the Forschungsinstitut fUr Mathematik (FIM), ETH Zurich, during the Fall Semester 2000. I would like to thank the faculty of the Mathematics Department, and especially Rolf Jeltsch and Michael Struwe, for giving me such a great opportunity to deliver the lectures in a very stimulating environment. Part of this material was also taught earlier as an advanced graduate course at the Ecole Poly technique (Palaiseau) during the years 1995-99, at the Instituto Superior Tecnico (Lisbon) in the Spring 1998, and at the University of Wisconsin (Madison) in the Fall 1998. This project started in the Summer 1995 when I gave a series of lectures at the Tata Institute of Fundamental Research (Bangalore). One main objective in this course is to provide a self-contained presentation of the well-posedness theory for nonlinear hyperbolic systems of first-order partial differential equations in divergence form, also called hyperbolic systems of con servation laws. Such equations arise in many areas of continuum physics when fundamental balance laws are formulated (for the mass, momentum, total energy . . . of a fluid or solid material) and small-scale mechanisms can be neglected (which are induced by viscosity, capillarity, heat conduction, Hall effect . . . ). Solutions to hyper bolic conservation laws exhibit singularities (shock waves), which appear in finite time even from smooth initial data Mathematics Differential equations, partial Partial Differential Equations Mathematik Nichtlineares hyperbolisches System (DE-588)4191896-4 gnd rswk-swf Erhaltungssatz (DE-588)4131214-4 gnd rswk-swf Hyperbolische Differentialgleichung (DE-588)4131213-2 gnd rswk-swf Erhaltungssatz (DE-588)4131214-4 s Nichtlineares hyperbolisches System (DE-588)4191896-4 s 1\p DE-604 Hyperbolische Differentialgleichung (DE-588)4131213-2 s 2\p DE-604 https://doi.org/10.1007/978-3-0348-8150-0 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | LeFloch, Philippe G. Hyperbolic Systems of Conservation Laws The Theory of Classical and Nonclassical Shock Waves Mathematics Differential equations, partial Partial Differential Equations Mathematik Nichtlineares hyperbolisches System (DE-588)4191896-4 gnd Erhaltungssatz (DE-588)4131214-4 gnd Hyperbolische Differentialgleichung (DE-588)4131213-2 gnd |
subject_GND | (DE-588)4191896-4 (DE-588)4131214-4 (DE-588)4131213-2 |
title | Hyperbolic Systems of Conservation Laws The Theory of Classical and Nonclassical Shock Waves |
title_auth | Hyperbolic Systems of Conservation Laws The Theory of Classical and Nonclassical Shock Waves |
title_exact_search | Hyperbolic Systems of Conservation Laws The Theory of Classical and Nonclassical Shock Waves |
title_full | Hyperbolic Systems of Conservation Laws The Theory of Classical and Nonclassical Shock Waves by Philippe G. LeFloch |
title_fullStr | Hyperbolic Systems of Conservation Laws The Theory of Classical and Nonclassical Shock Waves by Philippe G. LeFloch |
title_full_unstemmed | Hyperbolic Systems of Conservation Laws The Theory of Classical and Nonclassical Shock Waves by Philippe G. LeFloch |
title_short | Hyperbolic Systems of Conservation Laws |
title_sort | hyperbolic systems of conservation laws the theory of classical and nonclassical shock waves |
title_sub | The Theory of Classical and Nonclassical Shock Waves |
topic | Mathematics Differential equations, partial Partial Differential Equations Mathematik Nichtlineares hyperbolisches System (DE-588)4191896-4 gnd Erhaltungssatz (DE-588)4131214-4 gnd Hyperbolische Differentialgleichung (DE-588)4131213-2 gnd |
topic_facet | Mathematics Differential equations, partial Partial Differential Equations Mathematik Nichtlineares hyperbolisches System Erhaltungssatz Hyperbolische Differentialgleichung |
url | https://doi.org/10.1007/978-3-0348-8150-0 |
work_keys_str_mv | AT leflochphilippeg hyperbolicsystemsofconservationlawsthetheoryofclassicalandnonclassicalshockwaves |