Multivariate Polynomial Approximation:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Basel
Birkhäuser Basel
2003
|
Schriftenreihe: | ISNM International Series of Numerical Mathematics
144 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Multivariate polynomials are a main tool in approximation. The book begins with an introduction to the general theory by presenting the most important facts on multivariate interpolation, quadrature, orthogonal projections and their summation, all treated under a constructive view, and embedded in the theory of positive linear operators. On this background, the book gives the first comprehensive introduction to the recently developped theory of generalized hyperinterpolation. As an application, the book gives a quick introduction to tomography. Several parts of the book are based on rotation principles, which are presented in the beginning of the book, together with all other basic facts needed |
Beschreibung: | 1 Online-Ressource (X, 358 p) |
ISBN: | 9783034880954 9783034894364 |
DOI: | 10.1007/978-3-0348-8095-4 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042422039 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2003 |||| o||u| ||||||eng d | ||
020 | |a 9783034880954 |c Online |9 978-3-0348-8095-4 | ||
020 | |a 9783034894364 |c Print |9 978-3-0348-9436-4 | ||
024 | 7 | |a 10.1007/978-3-0348-8095-4 |2 doi | |
035 | |a (OCoLC)1184322512 | ||
035 | |a (DE-599)BVBBV042422039 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 511.4 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Reimer, Manfred |e Verfasser |4 aut | |
245 | 1 | 0 | |a Multivariate Polynomial Approximation |c by Manfred Reimer |
264 | 1 | |a Basel |b Birkhäuser Basel |c 2003 | |
300 | |a 1 Online-Ressource (X, 358 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a ISNM International Series of Numerical Mathematics |v 144 | |
500 | |a Multivariate polynomials are a main tool in approximation. The book begins with an introduction to the general theory by presenting the most important facts on multivariate interpolation, quadrature, orthogonal projections and their summation, all treated under a constructive view, and embedded in the theory of positive linear operators. On this background, the book gives the first comprehensive introduction to the recently developped theory of generalized hyperinterpolation. As an application, the book gives a quick introduction to tomography. Several parts of the book are based on rotation principles, which are presented in the beginning of the book, together with all other basic facts needed | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Numerical analysis | |
650 | 4 | |a Approximations and Expansions | |
650 | 4 | |a Numerical Analysis | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Multivariate Approximation |0 (DE-588)4314108-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Polynomapproximation |0 (DE-588)4197097-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Multivariates Polynom |0 (DE-588)4645038-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Polynomapproximation |0 (DE-588)4197097-4 |D s |
689 | 0 | 1 | |a Multivariates Polynom |0 (DE-588)4645038-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Multivariate Approximation |0 (DE-588)4314108-0 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-0348-8095-4 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857456 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153095884636160 |
---|---|
any_adam_object | |
author | Reimer, Manfred |
author_facet | Reimer, Manfred |
author_role | aut |
author_sort | Reimer, Manfred |
author_variant | m r mr |
building | Verbundindex |
bvnumber | BV042422039 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184322512 (DE-599)BVBBV042422039 |
dewey-full | 511.4 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.4 |
dewey-search | 511.4 |
dewey-sort | 3511.4 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-0348-8095-4 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02667nmm a2200541zcb4500</leader><controlfield tag="001">BV042422039</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2003 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034880954</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-0348-8095-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034894364</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-0348-9436-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-0348-8095-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184322512</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422039</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511.4</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Reimer, Manfred</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multivariate Polynomial Approximation</subfield><subfield code="c">by Manfred Reimer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">Birkhäuser Basel</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 358 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">ISNM International Series of Numerical Mathematics</subfield><subfield code="v">144</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Multivariate polynomials are a main tool in approximation. The book begins with an introduction to the general theory by presenting the most important facts on multivariate interpolation, quadrature, orthogonal projections and their summation, all treated under a constructive view, and embedded in the theory of positive linear operators. On this background, the book gives the first comprehensive introduction to the recently developped theory of generalized hyperinterpolation. As an application, the book gives a quick introduction to tomography. Several parts of the book are based on rotation principles, which are presented in the beginning of the book, together with all other basic facts needed</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Approximations and Expansions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Multivariate Approximation</subfield><subfield code="0">(DE-588)4314108-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Polynomapproximation</subfield><subfield code="0">(DE-588)4197097-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Multivariates Polynom</subfield><subfield code="0">(DE-588)4645038-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Polynomapproximation</subfield><subfield code="0">(DE-588)4197097-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Multivariates Polynom</subfield><subfield code="0">(DE-588)4645038-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Multivariate Approximation</subfield><subfield code="0">(DE-588)4314108-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-0348-8095-4</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857456</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042422039 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:10Z |
institution | BVB |
isbn | 9783034880954 9783034894364 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857456 |
oclc_num | 1184322512 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (X, 358 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Birkhäuser Basel |
record_format | marc |
series2 | ISNM International Series of Numerical Mathematics |
spelling | Reimer, Manfred Verfasser aut Multivariate Polynomial Approximation by Manfred Reimer Basel Birkhäuser Basel 2003 1 Online-Ressource (X, 358 p) txt rdacontent c rdamedia cr rdacarrier ISNM International Series of Numerical Mathematics 144 Multivariate polynomials are a main tool in approximation. The book begins with an introduction to the general theory by presenting the most important facts on multivariate interpolation, quadrature, orthogonal projections and their summation, all treated under a constructive view, and embedded in the theory of positive linear operators. On this background, the book gives the first comprehensive introduction to the recently developped theory of generalized hyperinterpolation. As an application, the book gives a quick introduction to tomography. Several parts of the book are based on rotation principles, which are presented in the beginning of the book, together with all other basic facts needed Mathematics Numerical analysis Approximations and Expansions Numerical Analysis Mathematik Multivariate Approximation (DE-588)4314108-0 gnd rswk-swf Polynomapproximation (DE-588)4197097-4 gnd rswk-swf Multivariates Polynom (DE-588)4645038-5 gnd rswk-swf Polynomapproximation (DE-588)4197097-4 s Multivariates Polynom (DE-588)4645038-5 s 1\p DE-604 Multivariate Approximation (DE-588)4314108-0 s 2\p DE-604 https://doi.org/10.1007/978-3-0348-8095-4 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Reimer, Manfred Multivariate Polynomial Approximation Mathematics Numerical analysis Approximations and Expansions Numerical Analysis Mathematik Multivariate Approximation (DE-588)4314108-0 gnd Polynomapproximation (DE-588)4197097-4 gnd Multivariates Polynom (DE-588)4645038-5 gnd |
subject_GND | (DE-588)4314108-0 (DE-588)4197097-4 (DE-588)4645038-5 |
title | Multivariate Polynomial Approximation |
title_auth | Multivariate Polynomial Approximation |
title_exact_search | Multivariate Polynomial Approximation |
title_full | Multivariate Polynomial Approximation by Manfred Reimer |
title_fullStr | Multivariate Polynomial Approximation by Manfred Reimer |
title_full_unstemmed | Multivariate Polynomial Approximation by Manfred Reimer |
title_short | Multivariate Polynomial Approximation |
title_sort | multivariate polynomial approximation |
topic | Mathematics Numerical analysis Approximations and Expansions Numerical Analysis Mathematik Multivariate Approximation (DE-588)4314108-0 gnd Polynomapproximation (DE-588)4197097-4 gnd Multivariates Polynom (DE-588)4645038-5 gnd |
topic_facet | Mathematics Numerical analysis Approximations and Expansions Numerical Analysis Mathematik Multivariate Approximation Polynomapproximation Multivariates Polynom |
url | https://doi.org/10.1007/978-3-0348-8095-4 |
work_keys_str_mv | AT reimermanfred multivariatepolynomialapproximation |