Nonlinear Hyperbolic Equations, Spectral Theory, and Wavelet Transformations: A Volume of Advances in Partial Differential Equations
Gespeichert in:
Weitere Verfasser: | , , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Basel
Birkhäuser Basel
2003
|
Schriftenreihe: | Operator Theory: Advances and Applications
145 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This book is the seventh volume of "Advances in Partial Differential Equations" , a series originating from the work of the research group "Partial Differential Equations and Complex Analysis" at the University of Potsdam. The present volume focuses on recent developments in nonlinear and hyperbolic equations. In the first contribution, P. Popivanov of Sofia studies the singularities of solutions of several classes of nonlinear partial differential equations and systems. He begins with a survey of the known theory on propagation and interaction of singularities and then presents his own results which have applications to the Monge-Ampere equation, to quasi-linear systems arising in fluid mechanics as well as to integro-differential equations for mechanics of media with memory. There follows an article by F. Hirosawa (Tsukuba) and M. Reissig (Freiberg) on Lp - Lq decay estimates for Klein-Gordon equations with time-dependent coefficients. They explain, in particular, the influence of the relation between the mass term and the wave propagation speed on the estimates. The third paper is by M. Dreher (Freiberg). He investigates quasi-linear weakly hyperbolic equations. His main topics are the local existence of solutions in Sobolev spaces and Coo, blow-up criteria, domains of dependence, and C= regularity. Spectral theory of semi bounded selfadjoint operators is the topic of the contribution by A. Noll (Darmstadt). He proves upper and lower bounds for the bottom eigenvalue as well as an upper bound for the second eigenvalue in terms of capacitary estimates |
Beschreibung: | 1 Online-Ressource (VII, 440 p) |
ISBN: | 9783034880732 9783034894296 |
DOI: | 10.1007/978-3-0348-8073-2 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042422031 | ||
003 | DE-604 | ||
005 | 20211216 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2003 |||| o||u| ||||||eng d | ||
020 | |a 9783034880732 |c Online |9 978-3-0348-8073-2 | ||
020 | |a 9783034894296 |c Print |9 978-3-0348-9429-6 | ||
024 | 7 | |a 10.1007/978-3-0348-8073-2 |2 doi | |
035 | |a (OCoLC)869872102 | ||
035 | |a (DE-599)BVBBV042422031 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515.724 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Albeverio, Sergio |4 edt | |
245 | 1 | 0 | |a Nonlinear Hyperbolic Equations, Spectral Theory, and Wavelet Transformations |b A Volume of Advances in Partial Differential Equations |c edited by Sergio Albeverio, Michael Demuth, Elmar Schrohe, Bert-Wolfgang Schulze |
264 | 1 | |a Basel |b Birkhäuser Basel |c 2003 | |
300 | |a 1 Online-Ressource (VII, 440 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Operator Theory: Advances and Applications |v 145 | |
500 | |a This book is the seventh volume of "Advances in Partial Differential Equations" , a series originating from the work of the research group "Partial Differential Equations and Complex Analysis" at the University of Potsdam. The present volume focuses on recent developments in nonlinear and hyperbolic equations. In the first contribution, P. Popivanov of Sofia studies the singularities of solutions of several classes of nonlinear partial differential equations and systems. He begins with a survey of the known theory on propagation and interaction of singularities and then presents his own results which have applications to the Monge-Ampere equation, to quasi-linear systems arising in fluid mechanics as well as to integro-differential equations for mechanics of media with memory. There follows an article by F. Hirosawa (Tsukuba) and M. Reissig (Freiberg) on Lp - Lq decay estimates for Klein-Gordon equations with time-dependent coefficients. They explain, in particular, the influence of the relation between the mass term and the wave propagation speed on the estimates. The third paper is by M. Dreher (Freiberg). He investigates quasi-linear weakly hyperbolic equations. His main topics are the local existence of solutions in Sobolev spaces and Coo, blow-up criteria, domains of dependence, and C= regularity. Spectral theory of semi bounded selfadjoint operators is the topic of the contribution by A. Noll (Darmstadt). He proves upper and lower bounds for the bottom eigenvalue as well as an upper bound for the second eigenvalue in terms of capacitary estimates | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Functional analysis | |
650 | 4 | |a Operator theory | |
650 | 4 | |a Differential equations, partial | |
650 | 4 | |a Mathematical physics | |
650 | 4 | |a Operator Theory | |
650 | 4 | |a Functional Analysis | |
650 | 4 | |a Partial Differential Equations | |
650 | 4 | |a Mathematical Methods in Physics | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Mathematische Physik | |
650 | 0 | 7 | |a Wavelet |0 (DE-588)4215427-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hyperbolische Differentialgleichung |0 (DE-588)4131213-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Spektraltheorie |0 (DE-588)4116561-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Partieller Differentialoperator |0 (DE-588)4173439-7 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Partieller Differentialoperator |0 (DE-588)4173439-7 |D s |
689 | 0 | 1 | |a Spektraltheorie |0 (DE-588)4116561-5 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
689 | 1 | 0 | |a Wavelet |0 (DE-588)4215427-3 |D s |
689 | 1 | |8 3\p |5 DE-604 | |
689 | 2 | 0 | |a Hyperbolische Differentialgleichung |0 (DE-588)4131213-2 |D s |
689 | 2 | |8 4\p |5 DE-604 | |
700 | 1 | |a Demuth, Michael |4 edt | |
700 | 1 | |a Schrohe, Elmar |4 edt | |
700 | 1 | |a Schulze, Bert-Wolfgang |4 edt | |
810 | 2 | |a Operator Theory |t Advances and Applications |v 145 |w (DE-604)BV035421307 |9 145 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-0348-8073-2 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857448 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153095860518912 |
---|---|
any_adam_object | |
author2 | Albeverio, Sergio Demuth, Michael Schrohe, Elmar Schulze, Bert-Wolfgang |
author2_role | edt edt edt edt |
author2_variant | s a sa m d md e s es b w s bws |
author_facet | Albeverio, Sergio Demuth, Michael Schrohe, Elmar Schulze, Bert-Wolfgang |
building | Verbundindex |
bvnumber | BV042422031 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)869872102 (DE-599)BVBBV042422031 |
dewey-full | 515.724 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.724 |
dewey-search | 515.724 |
dewey-sort | 3515.724 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-0348-8073-2 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04531nmm a2200733zcb4500</leader><controlfield tag="001">BV042422031</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20211216 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2003 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034880732</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-0348-8073-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034894296</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-0348-9429-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-0348-8073-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)869872102</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422031</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.724</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Albeverio, Sergio</subfield><subfield code="4">edt</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nonlinear Hyperbolic Equations, Spectral Theory, and Wavelet Transformations</subfield><subfield code="b">A Volume of Advances in Partial Differential Equations</subfield><subfield code="c">edited by Sergio Albeverio, Michael Demuth, Elmar Schrohe, Bert-Wolfgang Schulze</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">Birkhäuser Basel</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VII, 440 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Operator Theory: Advances and Applications</subfield><subfield code="v">145</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book is the seventh volume of "Advances in Partial Differential Equations" , a series originating from the work of the research group "Partial Differential Equations and Complex Analysis" at the University of Potsdam. The present volume focuses on recent developments in nonlinear and hyperbolic equations. In the first contribution, P. Popivanov of Sofia studies the singularities of solutions of several classes of nonlinear partial differential equations and systems. He begins with a survey of the known theory on propagation and interaction of singularities and then presents his own results which have applications to the Monge-Ampere equation, to quasi-linear systems arising in fluid mechanics as well as to integro-differential equations for mechanics of media with memory. There follows an article by F. Hirosawa (Tsukuba) and M. Reissig (Freiberg) on Lp - Lq decay estimates for Klein-Gordon equations with time-dependent coefficients. They explain, in particular, the influence of the relation between the mass term and the wave propagation speed on the estimates. The third paper is by M. Dreher (Freiberg). He investigates quasi-linear weakly hyperbolic equations. His main topics are the local existence of solutions in Sobolev spaces and Coo, blow-up criteria, domains of dependence, and C= regularity. Spectral theory of semi bounded selfadjoint operators is the topic of the contribution by A. Noll (Darmstadt). He proves upper and lower bounds for the bottom eigenvalue as well as an upper bound for the second eigenvalue in terms of capacitary estimates</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operator theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operator Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Methods in Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematische Physik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wavelet</subfield><subfield code="0">(DE-588)4215427-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hyperbolische Differentialgleichung</subfield><subfield code="0">(DE-588)4131213-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Spektraltheorie</subfield><subfield code="0">(DE-588)4116561-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Partieller Differentialoperator</subfield><subfield code="0">(DE-588)4173439-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Partieller Differentialoperator</subfield><subfield code="0">(DE-588)4173439-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Spektraltheorie</subfield><subfield code="0">(DE-588)4116561-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Wavelet</subfield><subfield code="0">(DE-588)4215427-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Hyperbolische Differentialgleichung</subfield><subfield code="0">(DE-588)4131213-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Demuth, Michael</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schrohe, Elmar</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schulze, Bert-Wolfgang</subfield><subfield code="4">edt</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Operator Theory</subfield><subfield code="t">Advances and Applications</subfield><subfield code="v">145</subfield><subfield code="w">(DE-604)BV035421307</subfield><subfield code="9">145</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-0348-8073-2</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857448</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV042422031 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:10Z |
institution | BVB |
isbn | 9783034880732 9783034894296 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857448 |
oclc_num | 869872102 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (VII, 440 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Birkhäuser Basel |
record_format | marc |
series2 | Operator Theory: Advances and Applications |
spelling | Albeverio, Sergio edt Nonlinear Hyperbolic Equations, Spectral Theory, and Wavelet Transformations A Volume of Advances in Partial Differential Equations edited by Sergio Albeverio, Michael Demuth, Elmar Schrohe, Bert-Wolfgang Schulze Basel Birkhäuser Basel 2003 1 Online-Ressource (VII, 440 p) txt rdacontent c rdamedia cr rdacarrier Operator Theory: Advances and Applications 145 This book is the seventh volume of "Advances in Partial Differential Equations" , a series originating from the work of the research group "Partial Differential Equations and Complex Analysis" at the University of Potsdam. The present volume focuses on recent developments in nonlinear and hyperbolic equations. In the first contribution, P. Popivanov of Sofia studies the singularities of solutions of several classes of nonlinear partial differential equations and systems. He begins with a survey of the known theory on propagation and interaction of singularities and then presents his own results which have applications to the Monge-Ampere equation, to quasi-linear systems arising in fluid mechanics as well as to integro-differential equations for mechanics of media with memory. There follows an article by F. Hirosawa (Tsukuba) and M. Reissig (Freiberg) on Lp - Lq decay estimates for Klein-Gordon equations with time-dependent coefficients. They explain, in particular, the influence of the relation between the mass term and the wave propagation speed on the estimates. The third paper is by M. Dreher (Freiberg). He investigates quasi-linear weakly hyperbolic equations. His main topics are the local existence of solutions in Sobolev spaces and Coo, blow-up criteria, domains of dependence, and C= regularity. Spectral theory of semi bounded selfadjoint operators is the topic of the contribution by A. Noll (Darmstadt). He proves upper and lower bounds for the bottom eigenvalue as well as an upper bound for the second eigenvalue in terms of capacitary estimates Mathematics Functional analysis Operator theory Differential equations, partial Mathematical physics Operator Theory Functional Analysis Partial Differential Equations Mathematical Methods in Physics Mathematik Mathematische Physik Wavelet (DE-588)4215427-3 gnd rswk-swf Hyperbolische Differentialgleichung (DE-588)4131213-2 gnd rswk-swf Spektraltheorie (DE-588)4116561-5 gnd rswk-swf Partieller Differentialoperator (DE-588)4173439-7 gnd rswk-swf 1\p (DE-588)4143413-4 Aufsatzsammlung gnd-content Partieller Differentialoperator (DE-588)4173439-7 s Spektraltheorie (DE-588)4116561-5 s 2\p DE-604 Wavelet (DE-588)4215427-3 s 3\p DE-604 Hyperbolische Differentialgleichung (DE-588)4131213-2 s 4\p DE-604 Demuth, Michael edt Schrohe, Elmar edt Schulze, Bert-Wolfgang edt Operator Theory Advances and Applications 145 (DE-604)BV035421307 145 https://doi.org/10.1007/978-3-0348-8073-2 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Nonlinear Hyperbolic Equations, Spectral Theory, and Wavelet Transformations A Volume of Advances in Partial Differential Equations Mathematics Functional analysis Operator theory Differential equations, partial Mathematical physics Operator Theory Functional Analysis Partial Differential Equations Mathematical Methods in Physics Mathematik Mathematische Physik Wavelet (DE-588)4215427-3 gnd Hyperbolische Differentialgleichung (DE-588)4131213-2 gnd Spektraltheorie (DE-588)4116561-5 gnd Partieller Differentialoperator (DE-588)4173439-7 gnd |
subject_GND | (DE-588)4215427-3 (DE-588)4131213-2 (DE-588)4116561-5 (DE-588)4173439-7 (DE-588)4143413-4 |
title | Nonlinear Hyperbolic Equations, Spectral Theory, and Wavelet Transformations A Volume of Advances in Partial Differential Equations |
title_auth | Nonlinear Hyperbolic Equations, Spectral Theory, and Wavelet Transformations A Volume of Advances in Partial Differential Equations |
title_exact_search | Nonlinear Hyperbolic Equations, Spectral Theory, and Wavelet Transformations A Volume of Advances in Partial Differential Equations |
title_full | Nonlinear Hyperbolic Equations, Spectral Theory, and Wavelet Transformations A Volume of Advances in Partial Differential Equations edited by Sergio Albeverio, Michael Demuth, Elmar Schrohe, Bert-Wolfgang Schulze |
title_fullStr | Nonlinear Hyperbolic Equations, Spectral Theory, and Wavelet Transformations A Volume of Advances in Partial Differential Equations edited by Sergio Albeverio, Michael Demuth, Elmar Schrohe, Bert-Wolfgang Schulze |
title_full_unstemmed | Nonlinear Hyperbolic Equations, Spectral Theory, and Wavelet Transformations A Volume of Advances in Partial Differential Equations edited by Sergio Albeverio, Michael Demuth, Elmar Schrohe, Bert-Wolfgang Schulze |
title_short | Nonlinear Hyperbolic Equations, Spectral Theory, and Wavelet Transformations |
title_sort | nonlinear hyperbolic equations spectral theory and wavelet transformations a volume of advances in partial differential equations |
title_sub | A Volume of Advances in Partial Differential Equations |
topic | Mathematics Functional analysis Operator theory Differential equations, partial Mathematical physics Operator Theory Functional Analysis Partial Differential Equations Mathematical Methods in Physics Mathematik Mathematische Physik Wavelet (DE-588)4215427-3 gnd Hyperbolische Differentialgleichung (DE-588)4131213-2 gnd Spektraltheorie (DE-588)4116561-5 gnd Partieller Differentialoperator (DE-588)4173439-7 gnd |
topic_facet | Mathematics Functional analysis Operator theory Differential equations, partial Mathematical physics Operator Theory Functional Analysis Partial Differential Equations Mathematical Methods in Physics Mathematik Mathematische Physik Wavelet Hyperbolische Differentialgleichung Spektraltheorie Partieller Differentialoperator Aufsatzsammlung |
url | https://doi.org/10.1007/978-3-0348-8073-2 |
volume_link | (DE-604)BV035421307 |
work_keys_str_mv | AT albeveriosergio nonlinearhyperbolicequationsspectraltheoryandwavelettransformationsavolumeofadvancesinpartialdifferentialequations AT demuthmichael nonlinearhyperbolicequationsspectraltheoryandwavelettransformationsavolumeofadvancesinpartialdifferentialequations AT schroheelmar nonlinearhyperbolicequationsspectraltheoryandwavelettransformationsavolumeofadvancesinpartialdifferentialequations AT schulzebertwolfgang nonlinearhyperbolicequationsspectraltheoryandwavelettransformationsavolumeofadvancesinpartialdifferentialequations |