Symplectic Geometry of Integrable Hamiltonian Systems:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Basel
Birkhäuser Basel
2003
|
Schriftenreihe: | Advanced Courses in Mathematics CRM Barcelona, Centre de Recerca Matemàtica
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Among all the Hamiltonian systems, the integrable ones have special geometric properties; in particular, their solutions are very regular and quasi-periodic. The quasi-periodicity of the solutions of an integrable system is a result of the fact that the system is invariant under a (semi-global) torus action. It is thus natural to investigate the symplectic manifolds that can be endowed with a (global) torus action. This leads to symplectic toric manifolds (Part B of this book). Physics makes a surprising come-back in Part A: to describe Mirror Symmetry, one looks for a special kind of Lagrangian submanifolds and integrable systems, the special Lagrangians. Furthermore, integrable Hamiltonian systems on punctured cotangent bundles are a starting point for the study of contact toric manifolds (Part C of this book) |
Beschreibung: | 1 Online-Ressource (240p) |
ISBN: | 9783034880718 9783764321673 |
DOI: | 10.1007/978-3-0348-8071-8 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042422030 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2003 |||| o||u| ||||||eng d | ||
020 | |a 9783034880718 |c Online |9 978-3-0348-8071-8 | ||
020 | |a 9783764321673 |c Print |9 978-3-7643-2167-3 | ||
024 | 7 | |a 10.1007/978-3-0348-8071-8 |2 doi | |
035 | |a (OCoLC)1184263921 | ||
035 | |a (DE-599)BVBBV042422030 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 516.36 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Audin, Michèle |e Verfasser |4 aut | |
245 | 1 | 0 | |a Symplectic Geometry of Integrable Hamiltonian Systems |c by Michèle Audin, Ana Cannas Silva, Eugene Lerman |
264 | 1 | |a Basel |b Birkhäuser Basel |c 2003 | |
300 | |a 1 Online-Ressource (240p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Advanced Courses in Mathematics CRM Barcelona, Centre de Recerca Matemàtica | |
500 | |a Among all the Hamiltonian systems, the integrable ones have special geometric properties; in particular, their solutions are very regular and quasi-periodic. The quasi-periodicity of the solutions of an integrable system is a result of the fact that the system is invariant under a (semi-global) torus action. It is thus natural to investigate the symplectic manifolds that can be endowed with a (global) torus action. This leads to symplectic toric manifolds (Part B of this book). Physics makes a surprising come-back in Part A: to describe Mirror Symmetry, one looks for a special kind of Lagrangian submanifolds and integrable systems, the special Lagrangians. Furthermore, integrable Hamiltonian systems on punctured cotangent bundles are a starting point for the study of contact toric manifolds (Part C of this book) | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Global differential geometry | |
650 | 4 | |a Cell aggregation / Mathematics | |
650 | 4 | |a Mathematical physics | |
650 | 4 | |a Differential Geometry | |
650 | 4 | |a Manifolds and Cell Complexes (incl. Diff.Topology) | |
650 | 4 | |a Mathematical Methods in Physics | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Mathematische Physik | |
650 | 0 | 7 | |a Integrables System |0 (DE-588)4114032-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hamiltonsches System |0 (DE-588)4139943-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Symplektische Geometrie |0 (DE-588)4194232-2 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)1071861417 |a Konferenzschrift |y 2001 |z Barcelona |2 gnd-content | |
689 | 0 | 0 | |a Hamiltonsches System |0 (DE-588)4139943-2 |D s |
689 | 0 | 1 | |a Integrables System |0 (DE-588)4114032-1 |D s |
689 | 0 | 2 | |a Symplektische Geometrie |0 (DE-588)4194232-2 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
700 | 1 | |a Silva, Ana Cannas |e Sonstige |4 oth | |
700 | 1 | |a Lerman, Eugene |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-0348-8071-8 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857447 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153095850033152 |
---|---|
any_adam_object | |
author | Audin, Michèle |
author_facet | Audin, Michèle |
author_role | aut |
author_sort | Audin, Michèle |
author_variant | m a ma |
building | Verbundindex |
bvnumber | BV042422030 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184263921 (DE-599)BVBBV042422030 |
dewey-full | 516.36 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.36 |
dewey-search | 516.36 |
dewey-sort | 3516.36 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-0348-8071-8 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03200nmm a2200613zc 4500</leader><controlfield tag="001">BV042422030</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2003 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034880718</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-0348-8071-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783764321673</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-7643-2167-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-0348-8071-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184263921</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422030</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.36</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Audin, Michèle</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Symplectic Geometry of Integrable Hamiltonian Systems</subfield><subfield code="c">by Michèle Audin, Ana Cannas Silva, Eugene Lerman</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">Birkhäuser Basel</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (240p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Advanced Courses in Mathematics CRM Barcelona, Centre de Recerca Matemàtica</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Among all the Hamiltonian systems, the integrable ones have special geometric properties; in particular, their solutions are very regular and quasi-periodic. The quasi-periodicity of the solutions of an integrable system is a result of the fact that the system is invariant under a (semi-global) torus action. It is thus natural to investigate the symplectic manifolds that can be endowed with a (global) torus action. This leads to symplectic toric manifolds (Part B of this book). Physics makes a surprising come-back in Part A: to describe Mirror Symmetry, one looks for a special kind of Lagrangian submanifolds and integrable systems, the special Lagrangians. Furthermore, integrable Hamiltonian systems on punctured cotangent bundles are a starting point for the study of contact toric manifolds (Part C of this book)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global differential geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cell aggregation / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manifolds and Cell Complexes (incl. Diff.Topology)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Methods in Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematische Physik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Integrables System</subfield><subfield code="0">(DE-588)4114032-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hamiltonsches System</subfield><subfield code="0">(DE-588)4139943-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Symplektische Geometrie</subfield><subfield code="0">(DE-588)4194232-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="y">2001</subfield><subfield code="z">Barcelona</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hamiltonsches System</subfield><subfield code="0">(DE-588)4139943-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Integrables System</subfield><subfield code="0">(DE-588)4114032-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Symplektische Geometrie</subfield><subfield code="0">(DE-588)4194232-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Silva, Ana Cannas</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lerman, Eugene</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-0348-8071-8</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857447</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)1071861417 Konferenzschrift 2001 Barcelona gnd-content |
genre_facet | Konferenzschrift 2001 Barcelona |
id | DE-604.BV042422030 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:10Z |
institution | BVB |
isbn | 9783034880718 9783764321673 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857447 |
oclc_num | 1184263921 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (240p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Birkhäuser Basel |
record_format | marc |
series2 | Advanced Courses in Mathematics CRM Barcelona, Centre de Recerca Matemàtica |
spelling | Audin, Michèle Verfasser aut Symplectic Geometry of Integrable Hamiltonian Systems by Michèle Audin, Ana Cannas Silva, Eugene Lerman Basel Birkhäuser Basel 2003 1 Online-Ressource (240p) txt rdacontent c rdamedia cr rdacarrier Advanced Courses in Mathematics CRM Barcelona, Centre de Recerca Matemàtica Among all the Hamiltonian systems, the integrable ones have special geometric properties; in particular, their solutions are very regular and quasi-periodic. The quasi-periodicity of the solutions of an integrable system is a result of the fact that the system is invariant under a (semi-global) torus action. It is thus natural to investigate the symplectic manifolds that can be endowed with a (global) torus action. This leads to symplectic toric manifolds (Part B of this book). Physics makes a surprising come-back in Part A: to describe Mirror Symmetry, one looks for a special kind of Lagrangian submanifolds and integrable systems, the special Lagrangians. Furthermore, integrable Hamiltonian systems on punctured cotangent bundles are a starting point for the study of contact toric manifolds (Part C of this book) Mathematics Global differential geometry Cell aggregation / Mathematics Mathematical physics Differential Geometry Manifolds and Cell Complexes (incl. Diff.Topology) Mathematical Methods in Physics Mathematik Mathematische Physik Integrables System (DE-588)4114032-1 gnd rswk-swf Hamiltonsches System (DE-588)4139943-2 gnd rswk-swf Symplektische Geometrie (DE-588)4194232-2 gnd rswk-swf 1\p (DE-588)1071861417 Konferenzschrift 2001 Barcelona gnd-content Hamiltonsches System (DE-588)4139943-2 s Integrables System (DE-588)4114032-1 s Symplektische Geometrie (DE-588)4194232-2 s 2\p DE-604 Silva, Ana Cannas Sonstige oth Lerman, Eugene Sonstige oth https://doi.org/10.1007/978-3-0348-8071-8 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Audin, Michèle Symplectic Geometry of Integrable Hamiltonian Systems Mathematics Global differential geometry Cell aggregation / Mathematics Mathematical physics Differential Geometry Manifolds and Cell Complexes (incl. Diff.Topology) Mathematical Methods in Physics Mathematik Mathematische Physik Integrables System (DE-588)4114032-1 gnd Hamiltonsches System (DE-588)4139943-2 gnd Symplektische Geometrie (DE-588)4194232-2 gnd |
subject_GND | (DE-588)4114032-1 (DE-588)4139943-2 (DE-588)4194232-2 (DE-588)1071861417 |
title | Symplectic Geometry of Integrable Hamiltonian Systems |
title_auth | Symplectic Geometry of Integrable Hamiltonian Systems |
title_exact_search | Symplectic Geometry of Integrable Hamiltonian Systems |
title_full | Symplectic Geometry of Integrable Hamiltonian Systems by Michèle Audin, Ana Cannas Silva, Eugene Lerman |
title_fullStr | Symplectic Geometry of Integrable Hamiltonian Systems by Michèle Audin, Ana Cannas Silva, Eugene Lerman |
title_full_unstemmed | Symplectic Geometry of Integrable Hamiltonian Systems by Michèle Audin, Ana Cannas Silva, Eugene Lerman |
title_short | Symplectic Geometry of Integrable Hamiltonian Systems |
title_sort | symplectic geometry of integrable hamiltonian systems |
topic | Mathematics Global differential geometry Cell aggregation / Mathematics Mathematical physics Differential Geometry Manifolds and Cell Complexes (incl. Diff.Topology) Mathematical Methods in Physics Mathematik Mathematische Physik Integrables System (DE-588)4114032-1 gnd Hamiltonsches System (DE-588)4139943-2 gnd Symplektische Geometrie (DE-588)4194232-2 gnd |
topic_facet | Mathematics Global differential geometry Cell aggregation / Mathematics Mathematical physics Differential Geometry Manifolds and Cell Complexes (incl. Diff.Topology) Mathematical Methods in Physics Mathematik Mathematische Physik Integrables System Hamiltonsches System Symplektische Geometrie Konferenzschrift 2001 Barcelona |
url | https://doi.org/10.1007/978-3-0348-8071-8 |
work_keys_str_mv | AT audinmichele symplecticgeometryofintegrablehamiltoniansystems AT silvaanacannas symplecticgeometryofintegrablehamiltoniansystems AT lermaneugene symplecticgeometryofintegrablehamiltoniansystems |