Orthogonal Systems and Convolution Operators:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Basel
Birkhäuser Basel
2003
|
Schriftenreihe: | Operator Theory: Advances and Applications
140 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | In this book we study orthogonal polynomials and their generalizations in spaces with weighted inner products. The impetus for our research was a deep theorem due to M.G. Krein along with subsequent results of Krein and H. Langer. Together with our colleagues, we have worked in this area for nearly fifteen years, and the results of our research are presented here in unified form. We are grateful to the Department of mathematics at the University of Maryland in College Park and to Tel-Aviv University for their support and encouragement. The support of the Silver Family Foundation is also highly appreciated. Introduction The starting point ofthis book is a study ofthe orthogonal polynomials {qn In ?: O} obtained by orthogonalizing the power functions I, Z, z2, ... on the unit circle. The orthogonality is with respect to the scalar product defined by where the weight w is a positive integrable function on the unit circle. These ortho gonal polynomials are called the Szego polynomials associated with the weight w |
Beschreibung: | 1 Online-Ressource (XVI, 238 p) |
ISBN: | 9783034880459 9783034894180 |
DOI: | 10.1007/978-3-0348-8045-9 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042422020 | ||
003 | DE-604 | ||
005 | 20190315 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2003 |||| o||u| ||||||eng d | ||
020 | |a 9783034880459 |c Online |9 978-3-0348-8045-9 | ||
020 | |a 9783034894180 |c Print |9 978-3-0348-9418-0 | ||
024 | 7 | |a 10.1007/978-3-0348-8045-9 |2 doi | |
035 | |a (OCoLC)1184335713 | ||
035 | |a (DE-599)BVBBV042422020 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 510 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Ellis, Robert |d 1938- |e Verfasser |0 (DE-588)142410039 |4 aut | |
245 | 1 | 0 | |a Orthogonal Systems and Convolution Operators |c by Robert L. Ellis, Israel Gohberg |
264 | 1 | |a Basel |b Birkhäuser Basel |c 2003 | |
300 | |a 1 Online-Ressource (XVI, 238 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Operator Theory: Advances and Applications |v 140 | |
500 | |a In this book we study orthogonal polynomials and their generalizations in spaces with weighted inner products. The impetus for our research was a deep theorem due to M.G. Krein along with subsequent results of Krein and H. Langer. Together with our colleagues, we have worked in this area for nearly fifteen years, and the results of our research are presented here in unified form. We are grateful to the Department of mathematics at the University of Maryland in College Park and to Tel-Aviv University for their support and encouragement. The support of the Silver Family Foundation is also highly appreciated. Introduction The starting point ofthis book is a study ofthe orthogonal polynomials {qn In ?: O} obtained by orthogonalizing the power functions I, Z, z2, ... on the unit circle. The orthogonality is with respect to the scalar product defined by where the weight w is a positive integrable function on the unit circle. These ortho gonal polynomials are called the Szego polynomials associated with the weight w | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Mathematics, general | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Orthogonale Polynome |0 (DE-588)4172863-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Orthogonalisierung |0 (DE-588)4172868-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Faltungsoperator |0 (DE-588)4388315-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Faltungsoperator |0 (DE-588)4388315-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Orthogonalisierung |0 (DE-588)4172868-3 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Orthogonale Polynome |0 (DE-588)4172863-4 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
700 | 1 | |a Gohberg, Yiśrāʿēl Z. |d 1928-2009 |e Sonstige |0 (DE-588)118915878 |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-0348-8045-9 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857437 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153095845838848 |
---|---|
any_adam_object | |
author | Ellis, Robert 1938- |
author_GND | (DE-588)142410039 (DE-588)118915878 |
author_facet | Ellis, Robert 1938- |
author_role | aut |
author_sort | Ellis, Robert 1938- |
author_variant | r e re |
building | Verbundindex |
bvnumber | BV042422020 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184335713 (DE-599)BVBBV042422020 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-0348-8045-9 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03125nmm a2200553zcb4500</leader><controlfield tag="001">BV042422020</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190315 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2003 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034880459</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-0348-8045-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034894180</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-0348-9418-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-0348-8045-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184335713</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422020</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ellis, Robert</subfield><subfield code="d">1938-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)142410039</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Orthogonal Systems and Convolution Operators</subfield><subfield code="c">by Robert L. Ellis, Israel Gohberg</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">Birkhäuser Basel</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVI, 238 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Operator Theory: Advances and Applications</subfield><subfield code="v">140</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">In this book we study orthogonal polynomials and their generalizations in spaces with weighted inner products. The impetus for our research was a deep theorem due to M.G. Krein along with subsequent results of Krein and H. Langer. Together with our colleagues, we have worked in this area for nearly fifteen years, and the results of our research are presented here in unified form. We are grateful to the Department of mathematics at the University of Maryland in College Park and to Tel-Aviv University for their support and encouragement. The support of the Silver Family Foundation is also highly appreciated. Introduction The starting point ofthis book is a study ofthe orthogonal polynomials {qn In ?: O} obtained by orthogonalizing the power functions I, Z, z2, ... on the unit circle. The orthogonality is with respect to the scalar product defined by where the weight w is a positive integrable function on the unit circle. These ortho gonal polynomials are called the Szego polynomials associated with the weight w</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Orthogonale Polynome</subfield><subfield code="0">(DE-588)4172863-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Orthogonalisierung</subfield><subfield code="0">(DE-588)4172868-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Faltungsoperator</subfield><subfield code="0">(DE-588)4388315-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Faltungsoperator</subfield><subfield code="0">(DE-588)4388315-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Orthogonalisierung</subfield><subfield code="0">(DE-588)4172868-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Orthogonale Polynome</subfield><subfield code="0">(DE-588)4172863-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gohberg, Yiśrāʿēl Z.</subfield><subfield code="d">1928-2009</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)118915878</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-0348-8045-9</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857437</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042422020 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:10Z |
institution | BVB |
isbn | 9783034880459 9783034894180 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857437 |
oclc_num | 1184335713 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XVI, 238 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Birkhäuser Basel |
record_format | marc |
series2 | Operator Theory: Advances and Applications |
spelling | Ellis, Robert 1938- Verfasser (DE-588)142410039 aut Orthogonal Systems and Convolution Operators by Robert L. Ellis, Israel Gohberg Basel Birkhäuser Basel 2003 1 Online-Ressource (XVI, 238 p) txt rdacontent c rdamedia cr rdacarrier Operator Theory: Advances and Applications 140 In this book we study orthogonal polynomials and their generalizations in spaces with weighted inner products. The impetus for our research was a deep theorem due to M.G. Krein along with subsequent results of Krein and H. Langer. Together with our colleagues, we have worked in this area for nearly fifteen years, and the results of our research are presented here in unified form. We are grateful to the Department of mathematics at the University of Maryland in College Park and to Tel-Aviv University for their support and encouragement. The support of the Silver Family Foundation is also highly appreciated. Introduction The starting point ofthis book is a study ofthe orthogonal polynomials {qn In ?: O} obtained by orthogonalizing the power functions I, Z, z2, ... on the unit circle. The orthogonality is with respect to the scalar product defined by where the weight w is a positive integrable function on the unit circle. These ortho gonal polynomials are called the Szego polynomials associated with the weight w Mathematics Mathematics, general Mathematik Orthogonale Polynome (DE-588)4172863-4 gnd rswk-swf Orthogonalisierung (DE-588)4172868-3 gnd rswk-swf Faltungsoperator (DE-588)4388315-1 gnd rswk-swf Faltungsoperator (DE-588)4388315-1 s 1\p DE-604 Orthogonalisierung (DE-588)4172868-3 s 2\p DE-604 Orthogonale Polynome (DE-588)4172863-4 s 3\p DE-604 Gohberg, Yiśrāʿēl Z. 1928-2009 Sonstige (DE-588)118915878 oth https://doi.org/10.1007/978-3-0348-8045-9 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Ellis, Robert 1938- Orthogonal Systems and Convolution Operators Mathematics Mathematics, general Mathematik Orthogonale Polynome (DE-588)4172863-4 gnd Orthogonalisierung (DE-588)4172868-3 gnd Faltungsoperator (DE-588)4388315-1 gnd |
subject_GND | (DE-588)4172863-4 (DE-588)4172868-3 (DE-588)4388315-1 |
title | Orthogonal Systems and Convolution Operators |
title_auth | Orthogonal Systems and Convolution Operators |
title_exact_search | Orthogonal Systems and Convolution Operators |
title_full | Orthogonal Systems and Convolution Operators by Robert L. Ellis, Israel Gohberg |
title_fullStr | Orthogonal Systems and Convolution Operators by Robert L. Ellis, Israel Gohberg |
title_full_unstemmed | Orthogonal Systems and Convolution Operators by Robert L. Ellis, Israel Gohberg |
title_short | Orthogonal Systems and Convolution Operators |
title_sort | orthogonal systems and convolution operators |
topic | Mathematics Mathematics, general Mathematik Orthogonale Polynome (DE-588)4172863-4 gnd Orthogonalisierung (DE-588)4172868-3 gnd Faltungsoperator (DE-588)4388315-1 gnd |
topic_facet | Mathematics Mathematics, general Mathematik Orthogonale Polynome Orthogonalisierung Faltungsoperator |
url | https://doi.org/10.1007/978-3-0348-8045-9 |
work_keys_str_mv | AT ellisrobert orthogonalsystemsandconvolutionoperators AT gohbergyisraʿelz orthogonalsystemsandconvolutionoperators |