Variational Problems in Riemannian Geometry: Bubbles, Scans and Geometric Flows
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Basel
Birkhäuser Basel
2004
|
Schriftenreihe: | Progress in Nonlinear Differential Equations and Their Applications
59 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This volume has grown from a conference entitled Harmonic Maps, Minimal Sur faces and Geometric Flows which was held at the Universite de Bretagne Occi dentale from July 7th-12th, 2002, in the town of Brest in Brittany, France. We welcomed many distinguished mathematicians from around the world and a dy namic meeting took place, with many fruitful exchanges of ideas. In order to produce a work that would have lasting value to the mathematical community, the organisers decided to invite a small number of participants to write in-depth articles around a common theme. These articles provide a balance between introductory surveys and ones that present the newest results that lie at the frontiers of research. We thank these mathematicians, all experts in their field, for their contributions. Such meetings depend on the support of national organisations and the local community and we would like to thank the following: the Ministere de l'Education Nationale, Ministere des Affaires Etrangeres, Centre National de Recherche Sci en tifique (CNRS), Conseil Regional de Bretagne, Conseil General du Finistere, Com munaute Urbaine de Brest, Universite de Bretagne Occidentale (UBO), Faculte des Sciences de l'UBO, Laboratoire de Mathematiques de l'UBO and the Departement de Mathematiques de l'UBO. Their support was generous and ensured the success of the meeting. We would also like to thank the members of the scientific committee for their advice and for their participation in the conception and composition of this volume: Pierre Berard, Jean-Pierre Bourguignon, Frederic Helein, Seiki Nishikawa and Franz Pedit |
Beschreibung: | 1 Online-Ressource (XVII, 150 p) |
ISBN: | 9783034879682 9783034896405 |
DOI: | 10.1007/978-3-0348-7968-2 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042422001 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2004 |||| o||u| ||||||eng d | ||
020 | |a 9783034879682 |c Online |9 978-3-0348-7968-2 | ||
020 | |a 9783034896405 |c Print |9 978-3-0348-9640-5 | ||
024 | 7 | |a 10.1007/978-3-0348-7968-2 |2 doi | |
035 | |a (OCoLC)863680953 | ||
035 | |a (DE-599)BVBBV042422001 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515.7 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Baird, Paul |e Verfasser |4 aut | |
245 | 1 | 0 | |a Variational Problems in Riemannian Geometry |b Bubbles, Scans and Geometric Flows |c edited by Paul Baird, Ali Fardoun, Rachid Regbaoui, Ahmad Soufi |
264 | 1 | |a Basel |b Birkhäuser Basel |c 2004 | |
300 | |a 1 Online-Ressource (XVII, 150 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Progress in Nonlinear Differential Equations and Their Applications |v 59 | |
500 | |a This volume has grown from a conference entitled Harmonic Maps, Minimal Sur faces and Geometric Flows which was held at the Universite de Bretagne Occi dentale from July 7th-12th, 2002, in the town of Brest in Brittany, France. We welcomed many distinguished mathematicians from around the world and a dy namic meeting took place, with many fruitful exchanges of ideas. In order to produce a work that would have lasting value to the mathematical community, the organisers decided to invite a small number of participants to write in-depth articles around a common theme. These articles provide a balance between introductory surveys and ones that present the newest results that lie at the frontiers of research. We thank these mathematicians, all experts in their field, for their contributions. Such meetings depend on the support of national organisations and the local community and we would like to thank the following: the Ministere de l'Education Nationale, Ministere des Affaires Etrangeres, Centre National de Recherche Sci en tifique (CNRS), Conseil Regional de Bretagne, Conseil General du Finistere, Com munaute Urbaine de Brest, Universite de Bretagne Occidentale (UBO), Faculte des Sciences de l'UBO, Laboratoire de Mathematiques de l'UBO and the Departement de Mathematiques de l'UBO. Their support was generous and ensured the success of the meeting. We would also like to thank the members of the scientific committee for their advice and for their participation in the conception and composition of this volume: Pierre Berard, Jean-Pierre Bourguignon, Frederic Helein, Seiki Nishikawa and Franz Pedit | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Functional analysis | |
650 | 4 | |a Differential equations, partial | |
650 | 4 | |a Global differential geometry | |
650 | 4 | |a Functional Analysis | |
650 | 4 | |a Partial Differential Equations | |
650 | 4 | |a Differential Geometry | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Variationsrechnung |0 (DE-588)4062355-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Variationsproblem |0 (DE-588)4187419-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Riemannsche Geometrie |0 (DE-588)4128462-8 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)1071861417 |a Konferenzschrift |y 2002 |z Brest Bretagne |2 gnd-content | |
689 | 0 | 0 | |a Variationsproblem |0 (DE-588)4187419-5 |D s |
689 | 0 | 1 | |a Riemannsche Geometrie |0 (DE-588)4128462-8 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
689 | 1 | 0 | |a Variationsrechnung |0 (DE-588)4062355-5 |D s |
689 | 1 | 1 | |a Riemannsche Geometrie |0 (DE-588)4128462-8 |D s |
689 | 1 | |8 3\p |5 DE-604 | |
700 | 1 | |a Fardoun, Ali |e Sonstige |4 oth | |
700 | 1 | |a Regbaoui, Rachid |e Sonstige |4 oth | |
700 | 1 | |a Soufi, Ahmad |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-0348-7968-2 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857418 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153095788167168 |
---|---|
any_adam_object | |
author | Baird, Paul |
author_facet | Baird, Paul |
author_role | aut |
author_sort | Baird, Paul |
author_variant | p b pb |
building | Verbundindex |
bvnumber | BV042422001 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863680953 (DE-599)BVBBV042422001 |
dewey-full | 515.7 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.7 |
dewey-search | 515.7 |
dewey-sort | 3515.7 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-0348-7968-2 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04182nmm a2200649zcb4500</leader><controlfield tag="001">BV042422001</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2004 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034879682</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-0348-7968-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034896405</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-0348-9640-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-0348-7968-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863680953</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422001</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.7</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Baird, Paul</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Variational Problems in Riemannian Geometry</subfield><subfield code="b">Bubbles, Scans and Geometric Flows</subfield><subfield code="c">edited by Paul Baird, Ali Fardoun, Rachid Regbaoui, Ahmad Soufi</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">Birkhäuser Basel</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVII, 150 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Progress in Nonlinear Differential Equations and Their Applications</subfield><subfield code="v">59</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This volume has grown from a conference entitled Harmonic Maps, Minimal Sur faces and Geometric Flows which was held at the Universite de Bretagne Occi dentale from July 7th-12th, 2002, in the town of Brest in Brittany, France. We welcomed many distinguished mathematicians from around the world and a dy namic meeting took place, with many fruitful exchanges of ideas. In order to produce a work that would have lasting value to the mathematical community, the organisers decided to invite a small number of participants to write in-depth articles around a common theme. These articles provide a balance between introductory surveys and ones that present the newest results that lie at the frontiers of research. We thank these mathematicians, all experts in their field, for their contributions. Such meetings depend on the support of national organisations and the local community and we would like to thank the following: the Ministere de l'Education Nationale, Ministere des Affaires Etrangeres, Centre National de Recherche Sci en tifique (CNRS), Conseil Regional de Bretagne, Conseil General du Finistere, Com munaute Urbaine de Brest, Universite de Bretagne Occidentale (UBO), Faculte des Sciences de l'UBO, Laboratoire de Mathematiques de l'UBO and the Departement de Mathematiques de l'UBO. Their support was generous and ensured the success of the meeting. We would also like to thank the members of the scientific committee for their advice and for their participation in the conception and composition of this volume: Pierre Berard, Jean-Pierre Bourguignon, Frederic Helein, Seiki Nishikawa and Franz Pedit</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global differential geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Variationsrechnung</subfield><subfield code="0">(DE-588)4062355-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Variationsproblem</subfield><subfield code="0">(DE-588)4187419-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Riemannsche Geometrie</subfield><subfield code="0">(DE-588)4128462-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="y">2002</subfield><subfield code="z">Brest Bretagne</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Variationsproblem</subfield><subfield code="0">(DE-588)4187419-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Riemannsche Geometrie</subfield><subfield code="0">(DE-588)4128462-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Variationsrechnung</subfield><subfield code="0">(DE-588)4062355-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Riemannsche Geometrie</subfield><subfield code="0">(DE-588)4128462-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fardoun, Ali</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Regbaoui, Rachid</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Soufi, Ahmad</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-0348-7968-2</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857418</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)1071861417 Konferenzschrift 2002 Brest Bretagne gnd-content |
genre_facet | Konferenzschrift 2002 Brest Bretagne |
id | DE-604.BV042422001 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:10Z |
institution | BVB |
isbn | 9783034879682 9783034896405 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857418 |
oclc_num | 863680953 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XVII, 150 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Birkhäuser Basel |
record_format | marc |
series2 | Progress in Nonlinear Differential Equations and Their Applications |
spelling | Baird, Paul Verfasser aut Variational Problems in Riemannian Geometry Bubbles, Scans and Geometric Flows edited by Paul Baird, Ali Fardoun, Rachid Regbaoui, Ahmad Soufi Basel Birkhäuser Basel 2004 1 Online-Ressource (XVII, 150 p) txt rdacontent c rdamedia cr rdacarrier Progress in Nonlinear Differential Equations and Their Applications 59 This volume has grown from a conference entitled Harmonic Maps, Minimal Sur faces and Geometric Flows which was held at the Universite de Bretagne Occi dentale from July 7th-12th, 2002, in the town of Brest in Brittany, France. We welcomed many distinguished mathematicians from around the world and a dy namic meeting took place, with many fruitful exchanges of ideas. In order to produce a work that would have lasting value to the mathematical community, the organisers decided to invite a small number of participants to write in-depth articles around a common theme. These articles provide a balance between introductory surveys and ones that present the newest results that lie at the frontiers of research. We thank these mathematicians, all experts in their field, for their contributions. Such meetings depend on the support of national organisations and the local community and we would like to thank the following: the Ministere de l'Education Nationale, Ministere des Affaires Etrangeres, Centre National de Recherche Sci en tifique (CNRS), Conseil Regional de Bretagne, Conseil General du Finistere, Com munaute Urbaine de Brest, Universite de Bretagne Occidentale (UBO), Faculte des Sciences de l'UBO, Laboratoire de Mathematiques de l'UBO and the Departement de Mathematiques de l'UBO. Their support was generous and ensured the success of the meeting. We would also like to thank the members of the scientific committee for their advice and for their participation in the conception and composition of this volume: Pierre Berard, Jean-Pierre Bourguignon, Frederic Helein, Seiki Nishikawa and Franz Pedit Mathematics Functional analysis Differential equations, partial Global differential geometry Functional Analysis Partial Differential Equations Differential Geometry Mathematik Variationsrechnung (DE-588)4062355-5 gnd rswk-swf Variationsproblem (DE-588)4187419-5 gnd rswk-swf Riemannsche Geometrie (DE-588)4128462-8 gnd rswk-swf 1\p (DE-588)1071861417 Konferenzschrift 2002 Brest Bretagne gnd-content Variationsproblem (DE-588)4187419-5 s Riemannsche Geometrie (DE-588)4128462-8 s 2\p DE-604 Variationsrechnung (DE-588)4062355-5 s 3\p DE-604 Fardoun, Ali Sonstige oth Regbaoui, Rachid Sonstige oth Soufi, Ahmad Sonstige oth https://doi.org/10.1007/978-3-0348-7968-2 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Baird, Paul Variational Problems in Riemannian Geometry Bubbles, Scans and Geometric Flows Mathematics Functional analysis Differential equations, partial Global differential geometry Functional Analysis Partial Differential Equations Differential Geometry Mathematik Variationsrechnung (DE-588)4062355-5 gnd Variationsproblem (DE-588)4187419-5 gnd Riemannsche Geometrie (DE-588)4128462-8 gnd |
subject_GND | (DE-588)4062355-5 (DE-588)4187419-5 (DE-588)4128462-8 (DE-588)1071861417 |
title | Variational Problems in Riemannian Geometry Bubbles, Scans and Geometric Flows |
title_auth | Variational Problems in Riemannian Geometry Bubbles, Scans and Geometric Flows |
title_exact_search | Variational Problems in Riemannian Geometry Bubbles, Scans and Geometric Flows |
title_full | Variational Problems in Riemannian Geometry Bubbles, Scans and Geometric Flows edited by Paul Baird, Ali Fardoun, Rachid Regbaoui, Ahmad Soufi |
title_fullStr | Variational Problems in Riemannian Geometry Bubbles, Scans and Geometric Flows edited by Paul Baird, Ali Fardoun, Rachid Regbaoui, Ahmad Soufi |
title_full_unstemmed | Variational Problems in Riemannian Geometry Bubbles, Scans and Geometric Flows edited by Paul Baird, Ali Fardoun, Rachid Regbaoui, Ahmad Soufi |
title_short | Variational Problems in Riemannian Geometry |
title_sort | variational problems in riemannian geometry bubbles scans and geometric flows |
title_sub | Bubbles, Scans and Geometric Flows |
topic | Mathematics Functional analysis Differential equations, partial Global differential geometry Functional Analysis Partial Differential Equations Differential Geometry Mathematik Variationsrechnung (DE-588)4062355-5 gnd Variationsproblem (DE-588)4187419-5 gnd Riemannsche Geometrie (DE-588)4128462-8 gnd |
topic_facet | Mathematics Functional analysis Differential equations, partial Global differential geometry Functional Analysis Partial Differential Equations Differential Geometry Mathematik Variationsrechnung Variationsproblem Riemannsche Geometrie Konferenzschrift 2002 Brest Bretagne |
url | https://doi.org/10.1007/978-3-0348-7968-2 |
work_keys_str_mv | AT bairdpaul variationalproblemsinriemanniangeometrybubblesscansandgeometricflows AT fardounali variationalproblemsinriemanniangeometrybubblesscansandgeometricflows AT regbaouirachid variationalproblemsinriemanniangeometrybubblesscansandgeometricflows AT soufiahmad variationalproblemsinriemanniangeometrybubblesscansandgeometricflows |