Torus Actions on Symplectic Manifolds:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Basel
Birkhäuser Basel
2004
|
Ausgabe: | Second revised edition |
Schriftenreihe: | Progress in Mathematics
93 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | How I have (re-)written this book The book the reader has in hand was supposed to be a new edition of [14]. I have hesitated quite a long time before deciding to do the re-writing work-the first edition has been sold out for a few years. There was absolutely no question of just correcting numerous misprints and a few mathematical errors. When I wrote the first edition, in 1989, the convexity and Duistermaat-Heckman theorems together with the irruption of toric varieties on the scene of symplectic geometry, due to Delzant, around which the book was organized, were still rather recent (less than ten years). I myself was rather happy with a small contribution I had made to the subject. I was giving a post-graduate course on all that and, well, these were lecture notes, just lecture notes. By chance, the book turned out to be rather popular: during the years since then, I had the opportunity to meet quite a few people(1) who kindly pretended to have learnt the subject in this book. However, the older book does not satisfy at all the idea I have now of what a good book should be. So that this "new edition" is, indeed, another book |
Beschreibung: | 1 Online-Ressource (VIII, 328 p) |
ISBN: | 9783034879606 9783034896375 |
DOI: | 10.1007/978-3-0348-7960-6 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042421998 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2004 |||| o||u| ||||||eng d | ||
020 | |a 9783034879606 |c Online |9 978-3-0348-7960-6 | ||
020 | |a 9783034896375 |c Print |9 978-3-0348-9637-5 | ||
024 | 7 | |a 10.1007/978-3-0348-7960-6 |2 doi | |
035 | |a (OCoLC)869864000 | ||
035 | |a (DE-599)BVBBV042421998 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 516.35 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Audin, Michèle |e Verfasser |4 aut | |
245 | 1 | 0 | |a Torus Actions on Symplectic Manifolds |c by Michèle Audin |
250 | |a Second revised edition | ||
264 | 1 | |a Basel |b Birkhäuser Basel |c 2004 | |
300 | |a 1 Online-Ressource (VIII, 328 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Progress in Mathematics |v 93 | |
500 | |a How I have (re-)written this book The book the reader has in hand was supposed to be a new edition of [14]. I have hesitated quite a long time before deciding to do the re-writing work-the first edition has been sold out for a few years. There was absolutely no question of just correcting numerous misprints and a few mathematical errors. When I wrote the first edition, in 1989, the convexity and Duistermaat-Heckman theorems together with the irruption of toric varieties on the scene of symplectic geometry, due to Delzant, around which the book was organized, were still rather recent (less than ten years). I myself was rather happy with a small contribution I had made to the subject. I was giving a post-graduate course on all that and, well, these were lecture notes, just lecture notes. By chance, the book turned out to be rather popular: during the years since then, I had the opportunity to meet quite a few people(1) who kindly pretended to have learnt the subject in this book. However, the older book does not satisfy at all the idea I have now of what a good book should be. So that this "new edition" is, indeed, another book | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Geometry, algebraic | |
650 | 4 | |a Global differential geometry | |
650 | 4 | |a Algebraic topology | |
650 | 4 | |a Algebraic Geometry | |
650 | 4 | |a Differential Geometry | |
650 | 4 | |a Algebraic Topology | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Torische Varietät |0 (DE-588)4786945-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Symplektische Geometrie |0 (DE-588)4194232-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lie-Gruppe |0 (DE-588)4035695-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Torus |0 (DE-588)4185738-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algebraische Topologie |0 (DE-588)4120861-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hamilton-Operator |0 (DE-588)4072278-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Topologie |0 (DE-588)4060425-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Symplektische Mannigfaltigkeit |0 (DE-588)4290704-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Symplektische Mannigfaltigkeit |0 (DE-588)4290704-4 |D s |
689 | 0 | 1 | |a Torus |0 (DE-588)4185738-0 |D s |
689 | 0 | 2 | |a Lie-Gruppe |0 (DE-588)4035695-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Torus |0 (DE-588)4185738-0 |D s |
689 | 1 | 1 | |a Hamilton-Operator |0 (DE-588)4072278-8 |D s |
689 | 1 | 2 | |a Symplektische Geometrie |0 (DE-588)4194232-2 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Symplektische Geometrie |0 (DE-588)4194232-2 |D s |
689 | 2 | 1 | |a Algebraische Topologie |0 (DE-588)4120861-4 |D s |
689 | 2 | 2 | |a Torische Varietät |0 (DE-588)4786945-8 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
689 | 3 | 0 | |a Symplektische Geometrie |0 (DE-588)4194232-2 |D s |
689 | 3 | 1 | |a Topologie |0 (DE-588)4060425-1 |D s |
689 | 3 | |8 4\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-0348-7960-6 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857415 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153095788167168 |
---|---|
any_adam_object | |
author | Audin, Michèle |
author_facet | Audin, Michèle |
author_role | aut |
author_sort | Audin, Michèle |
author_variant | m a ma |
building | Verbundindex |
bvnumber | BV042421998 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)869864000 (DE-599)BVBBV042421998 |
dewey-full | 516.35 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.35 |
dewey-search | 516.35 |
dewey-sort | 3516.35 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-0348-7960-6 |
edition | Second revised edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04209nmm a2200793zcb4500</leader><controlfield tag="001">BV042421998</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2004 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034879606</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-0348-7960-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034896375</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-0348-9637-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-0348-7960-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)869864000</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421998</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.35</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Audin, Michèle</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Torus Actions on Symplectic Manifolds</subfield><subfield code="c">by Michèle Audin</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second revised edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">Birkhäuser Basel</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VIII, 328 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Progress in Mathematics</subfield><subfield code="v">93</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">How I have (re-)written this book The book the reader has in hand was supposed to be a new edition of [14]. I have hesitated quite a long time before deciding to do the re-writing work-the first edition has been sold out for a few years. There was absolutely no question of just correcting numerous misprints and a few mathematical errors. When I wrote the first edition, in 1989, the convexity and Duistermaat-Heckman theorems together with the irruption of toric varieties on the scene of symplectic geometry, due to Delzant, around which the book was organized, were still rather recent (less than ten years). I myself was rather happy with a small contribution I had made to the subject. I was giving a post-graduate course on all that and, well, these were lecture notes, just lecture notes. By chance, the book turned out to be rather popular: during the years since then, I had the opportunity to meet quite a few people(1) who kindly pretended to have learnt the subject in this book. However, the older book does not satisfy at all the idea I have now of what a good book should be. So that this "new edition" is, indeed, another book</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, algebraic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global differential geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Torische Varietät</subfield><subfield code="0">(DE-588)4786945-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Symplektische Geometrie</subfield><subfield code="0">(DE-588)4194232-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Torus</subfield><subfield code="0">(DE-588)4185738-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Topologie</subfield><subfield code="0">(DE-588)4120861-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hamilton-Operator</subfield><subfield code="0">(DE-588)4072278-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Topologie</subfield><subfield code="0">(DE-588)4060425-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Symplektische Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4290704-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Symplektische Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4290704-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Torus</subfield><subfield code="0">(DE-588)4185738-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Torus</subfield><subfield code="0">(DE-588)4185738-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Hamilton-Operator</subfield><subfield code="0">(DE-588)4072278-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Symplektische Geometrie</subfield><subfield code="0">(DE-588)4194232-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Symplektische Geometrie</subfield><subfield code="0">(DE-588)4194232-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Algebraische Topologie</subfield><subfield code="0">(DE-588)4120861-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="2"><subfield code="a">Torische Varietät</subfield><subfield code="0">(DE-588)4786945-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Symplektische Geometrie</subfield><subfield code="0">(DE-588)4194232-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="1"><subfield code="a">Topologie</subfield><subfield code="0">(DE-588)4060425-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-0348-7960-6</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857415</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042421998 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:10Z |
institution | BVB |
isbn | 9783034879606 9783034896375 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857415 |
oclc_num | 869864000 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (VIII, 328 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Birkhäuser Basel |
record_format | marc |
series2 | Progress in Mathematics |
spelling | Audin, Michèle Verfasser aut Torus Actions on Symplectic Manifolds by Michèle Audin Second revised edition Basel Birkhäuser Basel 2004 1 Online-Ressource (VIII, 328 p) txt rdacontent c rdamedia cr rdacarrier Progress in Mathematics 93 How I have (re-)written this book The book the reader has in hand was supposed to be a new edition of [14]. I have hesitated quite a long time before deciding to do the re-writing work-the first edition has been sold out for a few years. There was absolutely no question of just correcting numerous misprints and a few mathematical errors. When I wrote the first edition, in 1989, the convexity and Duistermaat-Heckman theorems together with the irruption of toric varieties on the scene of symplectic geometry, due to Delzant, around which the book was organized, were still rather recent (less than ten years). I myself was rather happy with a small contribution I had made to the subject. I was giving a post-graduate course on all that and, well, these were lecture notes, just lecture notes. By chance, the book turned out to be rather popular: during the years since then, I had the opportunity to meet quite a few people(1) who kindly pretended to have learnt the subject in this book. However, the older book does not satisfy at all the idea I have now of what a good book should be. So that this "new edition" is, indeed, another book Mathematics Geometry, algebraic Global differential geometry Algebraic topology Algebraic Geometry Differential Geometry Algebraic Topology Mathematik Torische Varietät (DE-588)4786945-8 gnd rswk-swf Symplektische Geometrie (DE-588)4194232-2 gnd rswk-swf Lie-Gruppe (DE-588)4035695-4 gnd rswk-swf Torus (DE-588)4185738-0 gnd rswk-swf Algebraische Topologie (DE-588)4120861-4 gnd rswk-swf Hamilton-Operator (DE-588)4072278-8 gnd rswk-swf Topologie (DE-588)4060425-1 gnd rswk-swf Symplektische Mannigfaltigkeit (DE-588)4290704-4 gnd rswk-swf Symplektische Mannigfaltigkeit (DE-588)4290704-4 s Torus (DE-588)4185738-0 s Lie-Gruppe (DE-588)4035695-4 s 1\p DE-604 Hamilton-Operator (DE-588)4072278-8 s Symplektische Geometrie (DE-588)4194232-2 s 2\p DE-604 Algebraische Topologie (DE-588)4120861-4 s Torische Varietät (DE-588)4786945-8 s 3\p DE-604 Topologie (DE-588)4060425-1 s 4\p DE-604 https://doi.org/10.1007/978-3-0348-7960-6 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Audin, Michèle Torus Actions on Symplectic Manifolds Mathematics Geometry, algebraic Global differential geometry Algebraic topology Algebraic Geometry Differential Geometry Algebraic Topology Mathematik Torische Varietät (DE-588)4786945-8 gnd Symplektische Geometrie (DE-588)4194232-2 gnd Lie-Gruppe (DE-588)4035695-4 gnd Torus (DE-588)4185738-0 gnd Algebraische Topologie (DE-588)4120861-4 gnd Hamilton-Operator (DE-588)4072278-8 gnd Topologie (DE-588)4060425-1 gnd Symplektische Mannigfaltigkeit (DE-588)4290704-4 gnd |
subject_GND | (DE-588)4786945-8 (DE-588)4194232-2 (DE-588)4035695-4 (DE-588)4185738-0 (DE-588)4120861-4 (DE-588)4072278-8 (DE-588)4060425-1 (DE-588)4290704-4 |
title | Torus Actions on Symplectic Manifolds |
title_auth | Torus Actions on Symplectic Manifolds |
title_exact_search | Torus Actions on Symplectic Manifolds |
title_full | Torus Actions on Symplectic Manifolds by Michèle Audin |
title_fullStr | Torus Actions on Symplectic Manifolds by Michèle Audin |
title_full_unstemmed | Torus Actions on Symplectic Manifolds by Michèle Audin |
title_short | Torus Actions on Symplectic Manifolds |
title_sort | torus actions on symplectic manifolds |
topic | Mathematics Geometry, algebraic Global differential geometry Algebraic topology Algebraic Geometry Differential Geometry Algebraic Topology Mathematik Torische Varietät (DE-588)4786945-8 gnd Symplektische Geometrie (DE-588)4194232-2 gnd Lie-Gruppe (DE-588)4035695-4 gnd Torus (DE-588)4185738-0 gnd Algebraische Topologie (DE-588)4120861-4 gnd Hamilton-Operator (DE-588)4072278-8 gnd Topologie (DE-588)4060425-1 gnd Symplektische Mannigfaltigkeit (DE-588)4290704-4 gnd |
topic_facet | Mathematics Geometry, algebraic Global differential geometry Algebraic topology Algebraic Geometry Differential Geometry Algebraic Topology Mathematik Torische Varietät Symplektische Geometrie Lie-Gruppe Torus Algebraische Topologie Hamilton-Operator Topologie Symplektische Mannigfaltigkeit |
url | https://doi.org/10.1007/978-3-0348-7960-6 |
work_keys_str_mv | AT audinmichele torusactionsonsymplecticmanifolds |