Reconstructive Integral Geometry:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Basel
Birkhäuser Basel
2004
|
Schriftenreihe: | Monographs in Mathematics
98 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | One hundred years ago (1904) Hermann Minkowski [58] posed a problem: to re 2 construct an even function I on the sphere 8 from knowledge of the integrals MI (C) = fc Ids over big circles C. Paul Funk found an explicit reconstruction formula for I from data of big circle integrals. Johann Radon studied a similar problem for the Eu clidean plane and space. The interest in reconstruction problems like Minkowski Funk's and Radon's has grown tremendously in the last four decades, stimulated by the spectrum of new modalities of image reconstruction. These are X-ray, MRI, gamma and positron radiography, ultrasound, seismic tomography, electron mi croscopy, synthetic radar imaging and others. The physical principles of these methods are very different, however their mathematical models and solution meth ods have very much in common. The umbrella name reconstructive integral geom etryl is used to specify the variety of these problems and methods. The objective of this book is to present in a uniform way the scope of well known and recent results and methods in the reconstructive integral geometry. We do not touch here the problems arising in adaptation of analytic methods to numerical reconstruction algorithms. We refer to the books [61], [62] which are focused on these problems. Various aspects of interplay of integral geometry and differential equations are discussed in Chapters 7 and 8. The results presented here are partially new |
Beschreibung: | 1 Online-Ressource (XII, 164 p) |
ISBN: | 9783034879415 9783034896290 |
DOI: | 10.1007/978-3-0348-7941-5 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042421993 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2004 |||| o||u| ||||||eng d | ||
020 | |a 9783034879415 |c Online |9 978-3-0348-7941-5 | ||
020 | |a 9783034896290 |c Print |9 978-3-0348-9629-0 | ||
024 | 7 | |a 10.1007/978-3-0348-7941-5 |2 doi | |
035 | |a (OCoLC)863759118 | ||
035 | |a (DE-599)BVBBV042421993 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515.72 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Palamodov, Victor |e Verfasser |4 aut | |
245 | 1 | 0 | |a Reconstructive Integral Geometry |c by Victor Palamodov |
264 | 1 | |a Basel |b Birkhäuser Basel |c 2004 | |
300 | |a 1 Online-Ressource (XII, 164 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Monographs in Mathematics |v 98 | |
500 | |a One hundred years ago (1904) Hermann Minkowski [58] posed a problem: to re 2 construct an even function I on the sphere 8 from knowledge of the integrals MI (C) = fc Ids over big circles C. Paul Funk found an explicit reconstruction formula for I from data of big circle integrals. Johann Radon studied a similar problem for the Eu clidean plane and space. The interest in reconstruction problems like Minkowski Funk's and Radon's has grown tremendously in the last four decades, stimulated by the spectrum of new modalities of image reconstruction. These are X-ray, MRI, gamma and positron radiography, ultrasound, seismic tomography, electron mi croscopy, synthetic radar imaging and others. The physical principles of these methods are very different, however their mathematical models and solution meth ods have very much in common. The umbrella name reconstructive integral geom etryl is used to specify the variety of these problems and methods. The objective of this book is to present in a uniform way the scope of well known and recent results and methods in the reconstructive integral geometry. We do not touch here the problems arising in adaptation of analytic methods to numerical reconstruction algorithms. We refer to the books [61], [62] which are focused on these problems. Various aspects of interplay of integral geometry and differential equations are discussed in Chapters 7 and 8. The results presented here are partially new | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Fourier analysis | |
650 | 4 | |a Integral Transforms | |
650 | 4 | |a Integral Transforms, Operational Calculus | |
650 | 4 | |a Fourier Analysis | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Integralgeometrie |0 (DE-588)4161911-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Radon-Transformation |0 (DE-588)4479199-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Integralgeometrie |0 (DE-588)4161911-0 |D s |
689 | 0 | 1 | |a Radon-Transformation |0 (DE-588)4479199-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-0348-7941-5 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857410 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153095768244224 |
---|---|
any_adam_object | |
author | Palamodov, Victor |
author_facet | Palamodov, Victor |
author_role | aut |
author_sort | Palamodov, Victor |
author_variant | v p vp |
building | Verbundindex |
bvnumber | BV042421993 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863759118 (DE-599)BVBBV042421993 |
dewey-full | 515.72 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.72 |
dewey-search | 515.72 |
dewey-sort | 3515.72 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-0348-7941-5 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03181nmm a2200505zcb4500</leader><controlfield tag="001">BV042421993</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2004 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034879415</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-0348-7941-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034896290</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-0348-9629-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-0348-7941-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863759118</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421993</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.72</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Palamodov, Victor</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Reconstructive Integral Geometry</subfield><subfield code="c">by Victor Palamodov</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">Birkhäuser Basel</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 164 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Monographs in Mathematics</subfield><subfield code="v">98</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">One hundred years ago (1904) Hermann Minkowski [58] posed a problem: to re 2 construct an even function I on the sphere 8 from knowledge of the integrals MI (C) = fc Ids over big circles C. Paul Funk found an explicit reconstruction formula for I from data of big circle integrals. Johann Radon studied a similar problem for the Eu clidean plane and space. The interest in reconstruction problems like Minkowski Funk's and Radon's has grown tremendously in the last four decades, stimulated by the spectrum of new modalities of image reconstruction. These are X-ray, MRI, gamma and positron radiography, ultrasound, seismic tomography, electron mi croscopy, synthetic radar imaging and others. The physical principles of these methods are very different, however their mathematical models and solution meth ods have very much in common. The umbrella name reconstructive integral geom etryl is used to specify the variety of these problems and methods. The objective of this book is to present in a uniform way the scope of well known and recent results and methods in the reconstructive integral geometry. We do not touch here the problems arising in adaptation of analytic methods to numerical reconstruction algorithms. We refer to the books [61], [62] which are focused on these problems. Various aspects of interplay of integral geometry and differential equations are discussed in Chapters 7 and 8. The results presented here are partially new</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fourier analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integral Transforms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integral Transforms, Operational Calculus</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fourier Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Integralgeometrie</subfield><subfield code="0">(DE-588)4161911-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Radon-Transformation</subfield><subfield code="0">(DE-588)4479199-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Integralgeometrie</subfield><subfield code="0">(DE-588)4161911-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Radon-Transformation</subfield><subfield code="0">(DE-588)4479199-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-0348-7941-5</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857410</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042421993 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:10Z |
institution | BVB |
isbn | 9783034879415 9783034896290 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857410 |
oclc_num | 863759118 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XII, 164 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Birkhäuser Basel |
record_format | marc |
series2 | Monographs in Mathematics |
spelling | Palamodov, Victor Verfasser aut Reconstructive Integral Geometry by Victor Palamodov Basel Birkhäuser Basel 2004 1 Online-Ressource (XII, 164 p) txt rdacontent c rdamedia cr rdacarrier Monographs in Mathematics 98 One hundred years ago (1904) Hermann Minkowski [58] posed a problem: to re 2 construct an even function I on the sphere 8 from knowledge of the integrals MI (C) = fc Ids over big circles C. Paul Funk found an explicit reconstruction formula for I from data of big circle integrals. Johann Radon studied a similar problem for the Eu clidean plane and space. The interest in reconstruction problems like Minkowski Funk's and Radon's has grown tremendously in the last four decades, stimulated by the spectrum of new modalities of image reconstruction. These are X-ray, MRI, gamma and positron radiography, ultrasound, seismic tomography, electron mi croscopy, synthetic radar imaging and others. The physical principles of these methods are very different, however their mathematical models and solution meth ods have very much in common. The umbrella name reconstructive integral geom etryl is used to specify the variety of these problems and methods. The objective of this book is to present in a uniform way the scope of well known and recent results and methods in the reconstructive integral geometry. We do not touch here the problems arising in adaptation of analytic methods to numerical reconstruction algorithms. We refer to the books [61], [62] which are focused on these problems. Various aspects of interplay of integral geometry and differential equations are discussed in Chapters 7 and 8. The results presented here are partially new Mathematics Fourier analysis Integral Transforms Integral Transforms, Operational Calculus Fourier Analysis Mathematik Integralgeometrie (DE-588)4161911-0 gnd rswk-swf Radon-Transformation (DE-588)4479199-9 gnd rswk-swf Integralgeometrie (DE-588)4161911-0 s Radon-Transformation (DE-588)4479199-9 s 1\p DE-604 https://doi.org/10.1007/978-3-0348-7941-5 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Palamodov, Victor Reconstructive Integral Geometry Mathematics Fourier analysis Integral Transforms Integral Transforms, Operational Calculus Fourier Analysis Mathematik Integralgeometrie (DE-588)4161911-0 gnd Radon-Transformation (DE-588)4479199-9 gnd |
subject_GND | (DE-588)4161911-0 (DE-588)4479199-9 |
title | Reconstructive Integral Geometry |
title_auth | Reconstructive Integral Geometry |
title_exact_search | Reconstructive Integral Geometry |
title_full | Reconstructive Integral Geometry by Victor Palamodov |
title_fullStr | Reconstructive Integral Geometry by Victor Palamodov |
title_full_unstemmed | Reconstructive Integral Geometry by Victor Palamodov |
title_short | Reconstructive Integral Geometry |
title_sort | reconstructive integral geometry |
topic | Mathematics Fourier analysis Integral Transforms Integral Transforms, Operational Calculus Fourier Analysis Mathematik Integralgeometrie (DE-588)4161911-0 gnd Radon-Transformation (DE-588)4479199-9 gnd |
topic_facet | Mathematics Fourier analysis Integral Transforms Integral Transforms, Operational Calculus Fourier Analysis Mathematik Integralgeometrie Radon-Transformation |
url | https://doi.org/10.1007/978-3-0348-7941-5 |
work_keys_str_mv | AT palamodovvictor reconstructiveintegralgeometry |