Parabolic Quasilinear Equations Minimizing Linear Growth Functionals:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Basel
Birkhäuser Basel
2004
|
Schriftenreihe: | Progress in Mathematics
223 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Award-winning monograph of the Ferran Sunyer i Balaguer Prize 2003. This book contains a detailed mathematical analysis of the variational approach to image restoration based on the minimization of the total variation submitted to the constraints given by the image acquisition model. This model, initially introduced by Rudin, Osher, and Fatemi, had a strong influence in the development of variational methods for image denoising and restoration, and pioneered the use of the BV model in image processing. After a full analysis of the model, the minimizing total variation flow is studied under different boundary conditions, and its main qualitative properties are exhibited. In particular, several explicit solutions of the denoising problem are computed |
Beschreibung: | 1 Online-Ressource (XIV, 342 p) |
ISBN: | 9783034879286 9783034896245 |
DOI: | 10.1007/978-3-0348-7928-6 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042421990 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2004 |||| o||u| ||||||eng d | ||
020 | |a 9783034879286 |c Online |9 978-3-0348-7928-6 | ||
020 | |a 9783034896245 |c Print |9 978-3-0348-9624-5 | ||
024 | 7 | |a 10.1007/978-3-0348-7928-6 |2 doi | |
035 | |a (OCoLC)1184322891 | ||
035 | |a (DE-599)BVBBV042421990 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515.353 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Andreu-Vaillo, Fuensanta |e Verfasser |4 aut | |
245 | 1 | 0 | |a Parabolic Quasilinear Equations Minimizing Linear Growth Functionals |c by Fuensanta Andreu-Vaillo, José M. Mazón, Vicent Caselles |
264 | 1 | |a Basel |b Birkhäuser Basel |c 2004 | |
300 | |a 1 Online-Ressource (XIV, 342 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Progress in Mathematics |v 223 | |
500 | |a Award-winning monograph of the Ferran Sunyer i Balaguer Prize 2003. This book contains a detailed mathematical analysis of the variational approach to image restoration based on the minimization of the total variation submitted to the constraints given by the image acquisition model. This model, initially introduced by Rudin, Osher, and Fatemi, had a strong influence in the development of variational methods for image denoising and restoration, and pioneered the use of the BV model in image processing. After a full analysis of the model, the minimizing total variation flow is studied under different boundary conditions, and its main qualitative properties are exhibited. In particular, several explicit solutions of the denoising problem are computed | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Functional analysis | |
650 | 4 | |a Differential equations, partial | |
650 | 4 | |a Visualization | |
650 | 4 | |a Mathematical optimization | |
650 | 4 | |a Partial Differential Equations | |
650 | 4 | |a Approximations and Expansions | |
650 | 4 | |a Functional Analysis | |
650 | 4 | |a Calculus of Variations and Optimal Control; Optimization | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Nichtlineare Differentialgleichung |0 (DE-588)4205536-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtlinearer Operator |0 (DE-588)4225824-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Parabolische Differentialgleichung |0 (DE-588)4173245-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Parabolische Differentialgleichung |0 (DE-588)4173245-5 |D s |
689 | 0 | 1 | |a Nichtlineare Differentialgleichung |0 (DE-588)4205536-2 |D s |
689 | 0 | 2 | |a Nichtlinearer Operator |0 (DE-588)4225824-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Mazón, José M. |e Sonstige |4 oth | |
700 | 1 | |a Caselles, Vicent |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-0348-7928-6 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857407 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153095760904192 |
---|---|
any_adam_object | |
author | Andreu-Vaillo, Fuensanta |
author_facet | Andreu-Vaillo, Fuensanta |
author_role | aut |
author_sort | Andreu-Vaillo, Fuensanta |
author_variant | f a v fav |
building | Verbundindex |
bvnumber | BV042421990 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184322891 (DE-599)BVBBV042421990 |
dewey-full | 515.353 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.353 |
dewey-search | 515.353 |
dewey-sort | 3515.353 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-0348-7928-6 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03052nmm a2200601zcb4500</leader><controlfield tag="001">BV042421990</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2004 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034879286</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-0348-7928-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034896245</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-0348-9624-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-0348-7928-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184322891</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421990</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.353</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Andreu-Vaillo, Fuensanta</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Parabolic Quasilinear Equations Minimizing Linear Growth Functionals</subfield><subfield code="c">by Fuensanta Andreu-Vaillo, José M. Mazón, Vicent Caselles</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">Birkhäuser Basel</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIV, 342 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Progress in Mathematics</subfield><subfield code="v">223</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Award-winning monograph of the Ferran Sunyer i Balaguer Prize 2003. This book contains a detailed mathematical analysis of the variational approach to image restoration based on the minimization of the total variation submitted to the constraints given by the image acquisition model. This model, initially introduced by Rudin, Osher, and Fatemi, had a strong influence in the development of variational methods for image denoising and restoration, and pioneered the use of the BV model in image processing. After a full analysis of the model, the minimizing total variation flow is studied under different boundary conditions, and its main qualitative properties are exhibited. In particular, several explicit solutions of the denoising problem are computed</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Visualization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Approximations and Expansions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calculus of Variations and Optimal Control; Optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare Differentialgleichung</subfield><subfield code="0">(DE-588)4205536-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlinearer Operator</subfield><subfield code="0">(DE-588)4225824-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Parabolische Differentialgleichung</subfield><subfield code="0">(DE-588)4173245-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Parabolische Differentialgleichung</subfield><subfield code="0">(DE-588)4173245-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Nichtlineare Differentialgleichung</subfield><subfield code="0">(DE-588)4205536-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Nichtlinearer Operator</subfield><subfield code="0">(DE-588)4225824-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mazón, José M.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Caselles, Vicent</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-0348-7928-6</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857407</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042421990 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:10Z |
institution | BVB |
isbn | 9783034879286 9783034896245 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857407 |
oclc_num | 1184322891 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XIV, 342 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Birkhäuser Basel |
record_format | marc |
series2 | Progress in Mathematics |
spelling | Andreu-Vaillo, Fuensanta Verfasser aut Parabolic Quasilinear Equations Minimizing Linear Growth Functionals by Fuensanta Andreu-Vaillo, José M. Mazón, Vicent Caselles Basel Birkhäuser Basel 2004 1 Online-Ressource (XIV, 342 p) txt rdacontent c rdamedia cr rdacarrier Progress in Mathematics 223 Award-winning monograph of the Ferran Sunyer i Balaguer Prize 2003. This book contains a detailed mathematical analysis of the variational approach to image restoration based on the minimization of the total variation submitted to the constraints given by the image acquisition model. This model, initially introduced by Rudin, Osher, and Fatemi, had a strong influence in the development of variational methods for image denoising and restoration, and pioneered the use of the BV model in image processing. After a full analysis of the model, the minimizing total variation flow is studied under different boundary conditions, and its main qualitative properties are exhibited. In particular, several explicit solutions of the denoising problem are computed Mathematics Functional analysis Differential equations, partial Visualization Mathematical optimization Partial Differential Equations Approximations and Expansions Functional Analysis Calculus of Variations and Optimal Control; Optimization Mathematik Nichtlineare Differentialgleichung (DE-588)4205536-2 gnd rswk-swf Nichtlinearer Operator (DE-588)4225824-8 gnd rswk-swf Parabolische Differentialgleichung (DE-588)4173245-5 gnd rswk-swf Parabolische Differentialgleichung (DE-588)4173245-5 s Nichtlineare Differentialgleichung (DE-588)4205536-2 s Nichtlinearer Operator (DE-588)4225824-8 s 1\p DE-604 Mazón, José M. Sonstige oth Caselles, Vicent Sonstige oth https://doi.org/10.1007/978-3-0348-7928-6 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Andreu-Vaillo, Fuensanta Parabolic Quasilinear Equations Minimizing Linear Growth Functionals Mathematics Functional analysis Differential equations, partial Visualization Mathematical optimization Partial Differential Equations Approximations and Expansions Functional Analysis Calculus of Variations and Optimal Control; Optimization Mathematik Nichtlineare Differentialgleichung (DE-588)4205536-2 gnd Nichtlinearer Operator (DE-588)4225824-8 gnd Parabolische Differentialgleichung (DE-588)4173245-5 gnd |
subject_GND | (DE-588)4205536-2 (DE-588)4225824-8 (DE-588)4173245-5 |
title | Parabolic Quasilinear Equations Minimizing Linear Growth Functionals |
title_auth | Parabolic Quasilinear Equations Minimizing Linear Growth Functionals |
title_exact_search | Parabolic Quasilinear Equations Minimizing Linear Growth Functionals |
title_full | Parabolic Quasilinear Equations Minimizing Linear Growth Functionals by Fuensanta Andreu-Vaillo, José M. Mazón, Vicent Caselles |
title_fullStr | Parabolic Quasilinear Equations Minimizing Linear Growth Functionals by Fuensanta Andreu-Vaillo, José M. Mazón, Vicent Caselles |
title_full_unstemmed | Parabolic Quasilinear Equations Minimizing Linear Growth Functionals by Fuensanta Andreu-Vaillo, José M. Mazón, Vicent Caselles |
title_short | Parabolic Quasilinear Equations Minimizing Linear Growth Functionals |
title_sort | parabolic quasilinear equations minimizing linear growth functionals |
topic | Mathematics Functional analysis Differential equations, partial Visualization Mathematical optimization Partial Differential Equations Approximations and Expansions Functional Analysis Calculus of Variations and Optimal Control; Optimization Mathematik Nichtlineare Differentialgleichung (DE-588)4205536-2 gnd Nichtlinearer Operator (DE-588)4225824-8 gnd Parabolische Differentialgleichung (DE-588)4173245-5 gnd |
topic_facet | Mathematics Functional analysis Differential equations, partial Visualization Mathematical optimization Partial Differential Equations Approximations and Expansions Functional Analysis Calculus of Variations and Optimal Control; Optimization Mathematik Nichtlineare Differentialgleichung Nichtlinearer Operator Parabolische Differentialgleichung |
url | https://doi.org/10.1007/978-3-0348-7928-6 |
work_keys_str_mv | AT andreuvaillofuensanta parabolicquasilinearequationsminimizinglineargrowthfunctionals AT mazonjosem parabolicquasilinearequationsminimizinglineargrowthfunctionals AT casellesvicent parabolicquasilinearequationsminimizinglineargrowthfunctionals |