New Difference Schemes for Partial Differential Equations:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Basel
Birkhäuser Basel
2004
|
Schriftenreihe: | Operator Theory: Advances and Applications
148 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The present monograph is devoted to the construction and investigation of the new high order of accuracy difference schemes of approximating the solutions of regular and singular perturbation boundary value problems for partial differential equations. The construction is based on the exact difference scheme and Taylor's decomposition on the two or three points. This approach permitted essentially to extend to a class of problems where the theory of difference methods is applicable. Namely, now it is possible to investigate the differential equations with variable coefficients and regular and singular perturbation boundary value problems. The investigation is based on new coercivity inequalities. The book will be of value to professional mathematicians, as well as advanced students in the fields of numerical analysis, functional analysis, and ordinary and partial differential equations |
Beschreibung: | 1 Online-Ressource (IX, 446 p) |
ISBN: | 9783034879224 9783034896221 |
DOI: | 10.1007/978-3-0348-7922-4 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042421987 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2004 |||| o||u| ||||||eng d | ||
020 | |a 9783034879224 |c Online |9 978-3-0348-7922-4 | ||
020 | |a 9783034896221 |c Print |9 978-3-0348-9622-1 | ||
024 | 7 | |a 10.1007/978-3-0348-7922-4 |2 doi | |
035 | |a (OCoLC)863815923 | ||
035 | |a (DE-599)BVBBV042421987 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515.724 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Ashyralyev, Allaberen |e Verfasser |4 aut | |
245 | 1 | 0 | |a New Difference Schemes for Partial Differential Equations |c by Allaberen Ashyralyev, Pavel E. Sobolevskii |
264 | 1 | |a Basel |b Birkhäuser Basel |c 2004 | |
300 | |a 1 Online-Ressource (IX, 446 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Operator Theory: Advances and Applications |v 148 | |
500 | |a The present monograph is devoted to the construction and investigation of the new high order of accuracy difference schemes of approximating the solutions of regular and singular perturbation boundary value problems for partial differential equations. The construction is based on the exact difference scheme and Taylor's decomposition on the two or three points. This approach permitted essentially to extend to a class of problems where the theory of difference methods is applicable. Namely, now it is possible to investigate the differential equations with variable coefficients and regular and singular perturbation boundary value problems. The investigation is based on new coercivity inequalities. The book will be of value to professional mathematicians, as well as advanced students in the fields of numerical analysis, functional analysis, and ordinary and partial differential equations | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Algebra | |
650 | 4 | |a Functional analysis | |
650 | 4 | |a Operator theory | |
650 | 4 | |a Differential equations, partial | |
650 | 4 | |a Numerical analysis | |
650 | 4 | |a Operator Theory | |
650 | 4 | |a Functional Analysis | |
650 | 4 | |a Partial Differential Equations | |
650 | 4 | |a Numerical Analysis | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Differenzengleichung |0 (DE-588)4012264-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Differenzengleichung |0 (DE-588)4012264-5 |D s |
689 | 0 | 1 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Sobolevskii, Pavel E. |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-0348-7922-4 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857404 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153095740981248 |
---|---|
any_adam_object | |
author | Ashyralyev, Allaberen |
author_facet | Ashyralyev, Allaberen |
author_role | aut |
author_sort | Ashyralyev, Allaberen |
author_variant | a a aa |
building | Verbundindex |
bvnumber | BV042421987 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863815923 (DE-599)BVBBV042421987 |
dewey-full | 515.724 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.724 |
dewey-search | 515.724 |
dewey-sort | 3515.724 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-0348-7922-4 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02935nmm a2200577zcb4500</leader><controlfield tag="001">BV042421987</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2004 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034879224</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-0348-7922-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034896221</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-0348-9622-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-0348-7922-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863815923</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421987</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.724</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ashyralyev, Allaberen</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">New Difference Schemes for Partial Differential Equations</subfield><subfield code="c">by Allaberen Ashyralyev, Pavel E. Sobolevskii</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">Birkhäuser Basel</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (IX, 446 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Operator Theory: Advances and Applications</subfield><subfield code="v">148</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The present monograph is devoted to the construction and investigation of the new high order of accuracy difference schemes of approximating the solutions of regular and singular perturbation boundary value problems for partial differential equations. The construction is based on the exact difference scheme and Taylor's decomposition on the two or three points. This approach permitted essentially to extend to a class of problems where the theory of difference methods is applicable. Namely, now it is possible to investigate the differential equations with variable coefficients and regular and singular perturbation boundary value problems. The investigation is based on new coercivity inequalities. The book will be of value to professional mathematicians, as well as advanced students in the fields of numerical analysis, functional analysis, and ordinary and partial differential equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operator theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operator Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differenzengleichung</subfield><subfield code="0">(DE-588)4012264-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Differenzengleichung</subfield><subfield code="0">(DE-588)4012264-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sobolevskii, Pavel E.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-0348-7922-4</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857404</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042421987 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:10Z |
institution | BVB |
isbn | 9783034879224 9783034896221 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857404 |
oclc_num | 863815923 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (IX, 446 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Birkhäuser Basel |
record_format | marc |
series2 | Operator Theory: Advances and Applications |
spelling | Ashyralyev, Allaberen Verfasser aut New Difference Schemes for Partial Differential Equations by Allaberen Ashyralyev, Pavel E. Sobolevskii Basel Birkhäuser Basel 2004 1 Online-Ressource (IX, 446 p) txt rdacontent c rdamedia cr rdacarrier Operator Theory: Advances and Applications 148 The present monograph is devoted to the construction and investigation of the new high order of accuracy difference schemes of approximating the solutions of regular and singular perturbation boundary value problems for partial differential equations. The construction is based on the exact difference scheme and Taylor's decomposition on the two or three points. This approach permitted essentially to extend to a class of problems where the theory of difference methods is applicable. Namely, now it is possible to investigate the differential equations with variable coefficients and regular and singular perturbation boundary value problems. The investigation is based on new coercivity inequalities. The book will be of value to professional mathematicians, as well as advanced students in the fields of numerical analysis, functional analysis, and ordinary and partial differential equations Mathematics Algebra Functional analysis Operator theory Differential equations, partial Numerical analysis Operator Theory Functional Analysis Partial Differential Equations Numerical Analysis Mathematik Differenzengleichung (DE-588)4012264-5 gnd rswk-swf Partielle Differentialgleichung (DE-588)4044779-0 gnd rswk-swf Differenzengleichung (DE-588)4012264-5 s Partielle Differentialgleichung (DE-588)4044779-0 s 1\p DE-604 Sobolevskii, Pavel E. Sonstige oth https://doi.org/10.1007/978-3-0348-7922-4 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Ashyralyev, Allaberen New Difference Schemes for Partial Differential Equations Mathematics Algebra Functional analysis Operator theory Differential equations, partial Numerical analysis Operator Theory Functional Analysis Partial Differential Equations Numerical Analysis Mathematik Differenzengleichung (DE-588)4012264-5 gnd Partielle Differentialgleichung (DE-588)4044779-0 gnd |
subject_GND | (DE-588)4012264-5 (DE-588)4044779-0 |
title | New Difference Schemes for Partial Differential Equations |
title_auth | New Difference Schemes for Partial Differential Equations |
title_exact_search | New Difference Schemes for Partial Differential Equations |
title_full | New Difference Schemes for Partial Differential Equations by Allaberen Ashyralyev, Pavel E. Sobolevskii |
title_fullStr | New Difference Schemes for Partial Differential Equations by Allaberen Ashyralyev, Pavel E. Sobolevskii |
title_full_unstemmed | New Difference Schemes for Partial Differential Equations by Allaberen Ashyralyev, Pavel E. Sobolevskii |
title_short | New Difference Schemes for Partial Differential Equations |
title_sort | new difference schemes for partial differential equations |
topic | Mathematics Algebra Functional analysis Operator theory Differential equations, partial Numerical analysis Operator Theory Functional Analysis Partial Differential Equations Numerical Analysis Mathematik Differenzengleichung (DE-588)4012264-5 gnd Partielle Differentialgleichung (DE-588)4044779-0 gnd |
topic_facet | Mathematics Algebra Functional analysis Operator theory Differential equations, partial Numerical analysis Operator Theory Functional Analysis Partial Differential Equations Numerical Analysis Mathematik Differenzengleichung Partielle Differentialgleichung |
url | https://doi.org/10.1007/978-3-0348-7922-4 |
work_keys_str_mv | AT ashyralyevallaberen newdifferenceschemesforpartialdifferentialequations AT sobolevskiipavele newdifferenceschemesforpartialdifferentialequations |