Modular Curves and Abelian Varieties:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Basel
Birkhäuser Basel
2004
|
Schriftenreihe: | Progress in Mathematics
224 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | It would be difficult to overestimate the influence and importance of modular forms, modular curves, and modular abelian varieties in the development of num ber theory and arithmetic geometry during the last fifty years. These subjects lie at the heart of many past achievements and future challenges. For example, the theory of complex multiplication, the classification of rational torsion on el liptic curves, the proof of Fermat's Last Theorem, and many results towards the Birch and Swinnerton-Dyer conjecture all make crucial use of modular forms and modular curves. A conference was held from July 15 to 18, 2002, at the Centre de Recerca Matematica (Bellaterra, Barcelona) under the title "Modular Curves and Abelian Varieties". Our conference presented some of the latest achievements in the theory to a diverse audience that included both specialists and young researchers. We emphasized especially the conjectural generalization of the Shimura-Taniyama conjecture to elliptic curves over number fields other than the field of rational numbers (elliptic Q-curves) and abelian varieties of dimension larger than one (abelian varieties of GL2-type) |
Beschreibung: | 1 Online-Ressource (VIII, 289 p) |
ISBN: | 9783034879194 9783034896214 |
DOI: | 10.1007/978-3-0348-7919-4 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042421986 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2004 |||| o||u| ||||||eng d | ||
020 | |a 9783034879194 |c Online |9 978-3-0348-7919-4 | ||
020 | |a 9783034896214 |c Print |9 978-3-0348-9621-4 | ||
024 | 7 | |a 10.1007/978-3-0348-7919-4 |2 doi | |
035 | |a (OCoLC)869857097 | ||
035 | |a (DE-599)BVBBV042421986 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 512.7 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Cremona, John E. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Modular Curves and Abelian Varieties |c edited by John E. Cremona, Joan-Carles Lario, Jordi Quer, Kenneth A. Ribet |
264 | 1 | |a Basel |b Birkhäuser Basel |c 2004 | |
300 | |a 1 Online-Ressource (VIII, 289 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Progress in Mathematics |v 224 | |
500 | |a It would be difficult to overestimate the influence and importance of modular forms, modular curves, and modular abelian varieties in the development of num ber theory and arithmetic geometry during the last fifty years. These subjects lie at the heart of many past achievements and future challenges. For example, the theory of complex multiplication, the classification of rational torsion on el liptic curves, the proof of Fermat's Last Theorem, and many results towards the Birch and Swinnerton-Dyer conjecture all make crucial use of modular forms and modular curves. A conference was held from July 15 to 18, 2002, at the Centre de Recerca Matematica (Bellaterra, Barcelona) under the title "Modular Curves and Abelian Varieties". Our conference presented some of the latest achievements in the theory to a diverse audience that included both specialists and young researchers. We emphasized especially the conjectural generalization of the Shimura-Taniyama conjecture to elliptic curves over number fields other than the field of rational numbers (elliptic Q-curves) and abelian varieties of dimension larger than one (abelian varieties of GL2-type) | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Geometry, algebraic | |
650 | 4 | |a Number theory | |
650 | 4 | |a Number Theory | |
650 | 4 | |a Algebraic Geometry | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Elliptische Funktion |0 (DE-588)4134665-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Elliptische Funktion |0 (DE-588)4134665-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Lario, Joan-Carles |e Sonstige |4 oth | |
700 | 1 | |a Quer, Jordi |e Sonstige |4 oth | |
700 | 1 | |a Ribet, Kenneth A. |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-0348-7919-4 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857403 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153095737835520 |
---|---|
any_adam_object | |
author | Cremona, John E. |
author_facet | Cremona, John E. |
author_role | aut |
author_sort | Cremona, John E. |
author_variant | j e c je jec |
building | Verbundindex |
bvnumber | BV042421986 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)869857097 (DE-599)BVBBV042421986 |
dewey-full | 512.7 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.7 |
dewey-search | 512.7 |
dewey-sort | 3512.7 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-0348-7919-4 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02925nmm a2200517zcb4500</leader><controlfield tag="001">BV042421986</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2004 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034879194</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-0348-7919-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034896214</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-0348-9621-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-0348-7919-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)869857097</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421986</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.7</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cremona, John E.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modular Curves and Abelian Varieties</subfield><subfield code="c">edited by John E. Cremona, Joan-Carles Lario, Jordi Quer, Kenneth A. Ribet</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">Birkhäuser Basel</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VIII, 289 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Progress in Mathematics</subfield><subfield code="v">224</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">It would be difficult to overestimate the influence and importance of modular forms, modular curves, and modular abelian varieties in the development of num ber theory and arithmetic geometry during the last fifty years. These subjects lie at the heart of many past achievements and future challenges. For example, the theory of complex multiplication, the classification of rational torsion on el liptic curves, the proof of Fermat's Last Theorem, and many results towards the Birch and Swinnerton-Dyer conjecture all make crucial use of modular forms and modular curves. A conference was held from July 15 to 18, 2002, at the Centre de Recerca Matematica (Bellaterra, Barcelona) under the title "Modular Curves and Abelian Varieties". Our conference presented some of the latest achievements in the theory to a diverse audience that included both specialists and young researchers. We emphasized especially the conjectural generalization of the Shimura-Taniyama conjecture to elliptic curves over number fields other than the field of rational numbers (elliptic Q-curves) and abelian varieties of dimension larger than one (abelian varieties of GL2-type)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, algebraic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elliptische Funktion</subfield><subfield code="0">(DE-588)4134665-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Elliptische Funktion</subfield><subfield code="0">(DE-588)4134665-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lario, Joan-Carles</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Quer, Jordi</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ribet, Kenneth A.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-0348-7919-4</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857403</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042421986 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:10Z |
institution | BVB |
isbn | 9783034879194 9783034896214 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857403 |
oclc_num | 869857097 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (VIII, 289 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Birkhäuser Basel |
record_format | marc |
series2 | Progress in Mathematics |
spelling | Cremona, John E. Verfasser aut Modular Curves and Abelian Varieties edited by John E. Cremona, Joan-Carles Lario, Jordi Quer, Kenneth A. Ribet Basel Birkhäuser Basel 2004 1 Online-Ressource (VIII, 289 p) txt rdacontent c rdamedia cr rdacarrier Progress in Mathematics 224 It would be difficult to overestimate the influence and importance of modular forms, modular curves, and modular abelian varieties in the development of num ber theory and arithmetic geometry during the last fifty years. These subjects lie at the heart of many past achievements and future challenges. For example, the theory of complex multiplication, the classification of rational torsion on el liptic curves, the proof of Fermat's Last Theorem, and many results towards the Birch and Swinnerton-Dyer conjecture all make crucial use of modular forms and modular curves. A conference was held from July 15 to 18, 2002, at the Centre de Recerca Matematica (Bellaterra, Barcelona) under the title "Modular Curves and Abelian Varieties". Our conference presented some of the latest achievements in the theory to a diverse audience that included both specialists and young researchers. We emphasized especially the conjectural generalization of the Shimura-Taniyama conjecture to elliptic curves over number fields other than the field of rational numbers (elliptic Q-curves) and abelian varieties of dimension larger than one (abelian varieties of GL2-type) Mathematics Geometry, algebraic Number theory Number Theory Algebraic Geometry Mathematik Elliptische Funktion (DE-588)4134665-8 gnd rswk-swf Elliptische Funktion (DE-588)4134665-8 s 1\p DE-604 Lario, Joan-Carles Sonstige oth Quer, Jordi Sonstige oth Ribet, Kenneth A. Sonstige oth https://doi.org/10.1007/978-3-0348-7919-4 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Cremona, John E. Modular Curves and Abelian Varieties Mathematics Geometry, algebraic Number theory Number Theory Algebraic Geometry Mathematik Elliptische Funktion (DE-588)4134665-8 gnd |
subject_GND | (DE-588)4134665-8 |
title | Modular Curves and Abelian Varieties |
title_auth | Modular Curves and Abelian Varieties |
title_exact_search | Modular Curves and Abelian Varieties |
title_full | Modular Curves and Abelian Varieties edited by John E. Cremona, Joan-Carles Lario, Jordi Quer, Kenneth A. Ribet |
title_fullStr | Modular Curves and Abelian Varieties edited by John E. Cremona, Joan-Carles Lario, Jordi Quer, Kenneth A. Ribet |
title_full_unstemmed | Modular Curves and Abelian Varieties edited by John E. Cremona, Joan-Carles Lario, Jordi Quer, Kenneth A. Ribet |
title_short | Modular Curves and Abelian Varieties |
title_sort | modular curves and abelian varieties |
topic | Mathematics Geometry, algebraic Number theory Number Theory Algebraic Geometry Mathematik Elliptische Funktion (DE-588)4134665-8 gnd |
topic_facet | Mathematics Geometry, algebraic Number theory Number Theory Algebraic Geometry Mathematik Elliptische Funktion |
url | https://doi.org/10.1007/978-3-0348-7919-4 |
work_keys_str_mv | AT cremonajohne modularcurvesandabelianvarieties AT lariojoancarles modularcurvesandabelianvarieties AT querjordi modularcurvesandabelianvarieties AT ribetkennetha modularcurvesandabelianvarieties |