Fractal Geometry and Stochastics III:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Basel
Birkhäuser Basel
2004
|
Schriftenreihe: | Progress in Probability
57 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Fractal geometry is used to model complicated natural and technical phenomena in various disciplines like physics, biology, finance, and medicine. Since most convincing models contain an element of randomness, stochastics enters the area in a natural way. This book documents the establishment of fractal geometry as a substantial mathematical theory. As in the previous volumes, which appeared in 1998 and 2000, leading experts known for clear exposition were selected as authors. They survey their field of expertise, emphasizing recent developments and open problems. Main topics include multifractal measures, dynamical systems, stochastic processes and random fractals, harmonic analysis on fractals |
Beschreibung: | 1 Online-Ressource (X, 262 p) |
ISBN: | 9783034878913 9783034896122 |
DOI: | 10.1007/978-3-0348-7891-3 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042421979 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2004 |||| o||u| ||||||eng d | ||
020 | |a 9783034878913 |c Online |9 978-3-0348-7891-3 | ||
020 | |a 9783034896122 |c Print |9 978-3-0348-9612-2 | ||
024 | 7 | |a 10.1007/978-3-0348-7891-3 |2 doi | |
035 | |a (OCoLC)869869991 | ||
035 | |a (DE-599)BVBBV042421979 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 519.2 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Bandt, Christoph |e Verfasser |4 aut | |
245 | 1 | 0 | |a Fractal Geometry and Stochastics III |c edited by Christoph Bandt, Umberto Mosco, Martina Zähle |
264 | 1 | |a Basel |b Birkhäuser Basel |c 2004 | |
300 | |a 1 Online-Ressource (X, 262 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Progress in Probability |v 57 | |
500 | |a Fractal geometry is used to model complicated natural and technical phenomena in various disciplines like physics, biology, finance, and medicine. Since most convincing models contain an element of randomness, stochastics enters the area in a natural way. This book documents the establishment of fractal geometry as a substantial mathematical theory. As in the previous volumes, which appeared in 1998 and 2000, leading experts known for clear exposition were selected as authors. They survey their field of expertise, emphasizing recent developments and open problems. Main topics include multifractal measures, dynamical systems, stochastic processes and random fractals, harmonic analysis on fractals | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Differentiable dynamical systems | |
650 | 4 | |a Mathematical optimization | |
650 | 4 | |a Distribution (Probability theory) | |
650 | 4 | |a Mathematical physics | |
650 | 4 | |a Probability Theory and Stochastic Processes | |
650 | 4 | |a Dynamical Systems and Ergodic Theory | |
650 | 4 | |a Measure and Integration | |
650 | 4 | |a Calculus of Variations and Optimal Control; Optimization | |
650 | 4 | |a Mathematical Methods in Physics | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Mathematische Physik | |
700 | 1 | |a Mosco, Umberto |e Sonstige |4 oth | |
700 | 1 | |a Zähle, Martina |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-0348-7891-3 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857396 |
Datensatz im Suchindex
_version_ | 1804153095729446912 |
---|---|
any_adam_object | |
author | Bandt, Christoph |
author_facet | Bandt, Christoph |
author_role | aut |
author_sort | Bandt, Christoph |
author_variant | c b cb |
building | Verbundindex |
bvnumber | BV042421979 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)869869991 (DE-599)BVBBV042421979 |
dewey-full | 519.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.2 |
dewey-search | 519.2 |
dewey-sort | 3519.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-0348-7891-3 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02512nmm a2200529zcb4500</leader><controlfield tag="001">BV042421979</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2004 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034878913</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-0348-7891-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034896122</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-0348-9612-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-0348-7891-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)869869991</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421979</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bandt, Christoph</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fractal Geometry and Stochastics III</subfield><subfield code="c">edited by Christoph Bandt, Umberto Mosco, Martina Zähle</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">Birkhäuser Basel</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 262 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Progress in Probability</subfield><subfield code="v">57</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Fractal geometry is used to model complicated natural and technical phenomena in various disciplines like physics, biology, finance, and medicine. Since most convincing models contain an element of randomness, stochastics enters the area in a natural way. This book documents the establishment of fractal geometry as a substantial mathematical theory. As in the previous volumes, which appeared in 1998 and 2000, leading experts known for clear exposition were selected as authors. They survey their field of expertise, emphasizing recent developments and open problems. Main topics include multifractal measures, dynamical systems, stochastic processes and random fractals, harmonic analysis on fractals</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differentiable dynamical systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distribution (Probability theory)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability Theory and Stochastic Processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamical Systems and Ergodic Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Measure and Integration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calculus of Variations and Optimal Control; Optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Methods in Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematische Physik</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mosco, Umberto</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zähle, Martina</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-0348-7891-3</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857396</subfield></datafield></record></collection> |
id | DE-604.BV042421979 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:10Z |
institution | BVB |
isbn | 9783034878913 9783034896122 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857396 |
oclc_num | 869869991 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (X, 262 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Birkhäuser Basel |
record_format | marc |
series2 | Progress in Probability |
spelling | Bandt, Christoph Verfasser aut Fractal Geometry and Stochastics III edited by Christoph Bandt, Umberto Mosco, Martina Zähle Basel Birkhäuser Basel 2004 1 Online-Ressource (X, 262 p) txt rdacontent c rdamedia cr rdacarrier Progress in Probability 57 Fractal geometry is used to model complicated natural and technical phenomena in various disciplines like physics, biology, finance, and medicine. Since most convincing models contain an element of randomness, stochastics enters the area in a natural way. This book documents the establishment of fractal geometry as a substantial mathematical theory. As in the previous volumes, which appeared in 1998 and 2000, leading experts known for clear exposition were selected as authors. They survey their field of expertise, emphasizing recent developments and open problems. Main topics include multifractal measures, dynamical systems, stochastic processes and random fractals, harmonic analysis on fractals Mathematics Differentiable dynamical systems Mathematical optimization Distribution (Probability theory) Mathematical physics Probability Theory and Stochastic Processes Dynamical Systems and Ergodic Theory Measure and Integration Calculus of Variations and Optimal Control; Optimization Mathematical Methods in Physics Mathematik Mathematische Physik Mosco, Umberto Sonstige oth Zähle, Martina Sonstige oth https://doi.org/10.1007/978-3-0348-7891-3 Verlag Volltext |
spellingShingle | Bandt, Christoph Fractal Geometry and Stochastics III Mathematics Differentiable dynamical systems Mathematical optimization Distribution (Probability theory) Mathematical physics Probability Theory and Stochastic Processes Dynamical Systems and Ergodic Theory Measure and Integration Calculus of Variations and Optimal Control; Optimization Mathematical Methods in Physics Mathematik Mathematische Physik |
title | Fractal Geometry and Stochastics III |
title_auth | Fractal Geometry and Stochastics III |
title_exact_search | Fractal Geometry and Stochastics III |
title_full | Fractal Geometry and Stochastics III edited by Christoph Bandt, Umberto Mosco, Martina Zähle |
title_fullStr | Fractal Geometry and Stochastics III edited by Christoph Bandt, Umberto Mosco, Martina Zähle |
title_full_unstemmed | Fractal Geometry and Stochastics III edited by Christoph Bandt, Umberto Mosco, Martina Zähle |
title_short | Fractal Geometry and Stochastics III |
title_sort | fractal geometry and stochastics iii |
topic | Mathematics Differentiable dynamical systems Mathematical optimization Distribution (Probability theory) Mathematical physics Probability Theory and Stochastic Processes Dynamical Systems and Ergodic Theory Measure and Integration Calculus of Variations and Optimal Control; Optimization Mathematical Methods in Physics Mathematik Mathematische Physik |
topic_facet | Mathematics Differentiable dynamical systems Mathematical optimization Distribution (Probability theory) Mathematical physics Probability Theory and Stochastic Processes Dynamical Systems and Ergodic Theory Measure and Integration Calculus of Variations and Optimal Control; Optimization Mathematical Methods in Physics Mathematik Mathematische Physik |
url | https://doi.org/10.1007/978-3-0348-7891-3 |
work_keys_str_mv | AT bandtchristoph fractalgeometryandstochasticsiii AT moscoumberto fractalgeometryandstochasticsiii AT zahlemartina fractalgeometryandstochasticsiii |