Applied Laplace Transforms and z-Transforms for Scientists and Engineers: a Computational Approach using a Mathematica Package
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Basel
Birkhäuser Basel
2004
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The theory of Laplace transformation is an important part of the mathematical background required for engineers, physicists and mathematicians. Laplace transformation methods provide easy and effective techniques for solving many problems arising in various fields of science and engineering, especially for solving differential equations. What the Laplace transformation does in the field of differential equations, the z-transformation achieves for difference equations. The two theories are parallel and have many analogies. Laplace and z transformations are also referred to as operational calculus, but this notion is also used in a more restricted sense to denote the operational calculus of Mikusinski. This book does not use the operational calculus of Mikusinski, whose approach is based on abstract algebra and is not readily accessible to engineers and scientists. The symbolic computation capability of Mathematica can now be used in favor of the Laplace and z-transformations. The first version of the Mathematica Package LaplaceAndzTransforrns developed by the author appeared ten years ago. The Package computes not only Laplace and z-transforms but also includes many routines from various domains of applications. Upon loading the Package, about one hundred and fifty new commands are added to the built-in commands of Mathematica. The code is placed in front of the already built-in code of Laplace and z-transformations of Mathematica so that built-in functions not covered by the Package remain available. The Package substantially enhances the Laplace and z-transformation facilities of Mathematica. The book is mainly designed for readers working in the field of applications |
Beschreibung: | 1 Online-Ressource (X, 500 p) |
ISBN: | 9783034878463 9783034895934 |
DOI: | 10.1007/978-3-0348-7846-3 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042421969 | ||
003 | DE-604 | ||
005 | 20180806 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2004 |||| o||u| ||||||eng d | ||
020 | |a 9783034878463 |c Online |9 978-3-0348-7846-3 | ||
020 | |a 9783034895934 |c Print |9 978-3-0348-9593-4 | ||
024 | 7 | |a 10.1007/978-3-0348-7846-3 |2 doi | |
035 | |a (OCoLC)905377220 | ||
035 | |a (DE-599)BVBBV042421969 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515.7 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Graf, Urs |d 1943- |e Verfasser |0 (DE-588)143621475 |4 aut | |
245 | 1 | 0 | |a Applied Laplace Transforms and z-Transforms for Scientists and Engineers |b a Computational Approach using a Mathematica Package |c by Urs Graf |
264 | 1 | |a Basel |b Birkhäuser Basel |c 2004 | |
300 | |a 1 Online-Ressource (X, 500 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a The theory of Laplace transformation is an important part of the mathematical background required for engineers, physicists and mathematicians. Laplace transformation methods provide easy and effective techniques for solving many problems arising in various fields of science and engineering, especially for solving differential equations. What the Laplace transformation does in the field of differential equations, the z-transformation achieves for difference equations. The two theories are parallel and have many analogies. Laplace and z transformations are also referred to as operational calculus, but this notion is also used in a more restricted sense to denote the operational calculus of Mikusinski. This book does not use the operational calculus of Mikusinski, whose approach is based on abstract algebra and is not readily accessible to engineers and scientists. The symbolic computation capability of Mathematica can now be used in favor of the Laplace and z-transformations. The first version of the Mathematica Package LaplaceAndzTransforrns developed by the author appeared ten years ago. The Package computes not only Laplace and z-transforms but also includes many routines from various domains of applications. Upon loading the Package, about one hundred and fifty new commands are added to the built-in commands of Mathematica. The code is placed in front of the already built-in code of Laplace and z-transformations of Mathematica so that built-in functions not covered by the Package remain available. The Package substantially enhances the Laplace and z-transformation facilities of Mathematica. The book is mainly designed for readers working in the field of applications | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Algebra / Data processing | |
650 | 4 | |a Functional analysis | |
650 | 4 | |a Integral Transforms | |
650 | 4 | |a Computer science / Mathematics | |
650 | 4 | |a Functional Analysis | |
650 | 4 | |a Symbolic and Algebraic Manipulation | |
650 | 4 | |a Integral Transforms, Operational Calculus | |
650 | 4 | |a Computational Mathematics and Numerical Analysis | |
650 | 4 | |a Datenverarbeitung | |
650 | 4 | |a Informatik | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Laplace-Transformation |0 (DE-588)4034577-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Z-Transformation |0 (DE-588)4191048-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematica |g Programm |0 (DE-588)4268208-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Z-Transformation |0 (DE-588)4191048-5 |D s |
689 | 0 | 1 | |a Mathematica |g Programm |0 (DE-588)4268208-3 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Laplace-Transformation |0 (DE-588)4034577-4 |D s |
689 | 1 | 1 | |a Mathematica |g Programm |0 (DE-588)4268208-3 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-0348-7846-3 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857386 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153095691698176 |
---|---|
any_adam_object | |
author | Graf, Urs 1943- |
author_GND | (DE-588)143621475 |
author_facet | Graf, Urs 1943- |
author_role | aut |
author_sort | Graf, Urs 1943- |
author_variant | u g ug |
building | Verbundindex |
bvnumber | BV042421969 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)905377220 (DE-599)BVBBV042421969 |
dewey-full | 515.7 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.7 |
dewey-search | 515.7 |
dewey-sort | 3515.7 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-0348-7846-3 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04054nmm a2200625zc 4500</leader><controlfield tag="001">BV042421969</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180806 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2004 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034878463</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-0348-7846-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034895934</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-0348-9593-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-0348-7846-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)905377220</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421969</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.7</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Graf, Urs</subfield><subfield code="d">1943-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)143621475</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Applied Laplace Transforms and z-Transforms for Scientists and Engineers</subfield><subfield code="b">a Computational Approach using a Mathematica Package</subfield><subfield code="c">by Urs Graf</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">Birkhäuser Basel</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 500 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The theory of Laplace transformation is an important part of the mathematical background required for engineers, physicists and mathematicians. Laplace transformation methods provide easy and effective techniques for solving many problems arising in various fields of science and engineering, especially for solving differential equations. What the Laplace transformation does in the field of differential equations, the z-transformation achieves for difference equations. The two theories are parallel and have many analogies. Laplace and z transformations are also referred to as operational calculus, but this notion is also used in a more restricted sense to denote the operational calculus of Mikusinski. This book does not use the operational calculus of Mikusinski, whose approach is based on abstract algebra and is not readily accessible to engineers and scientists. The symbolic computation capability of Mathematica can now be used in favor of the Laplace and z-transformations. The first version of the Mathematica Package LaplaceAndzTransforrns developed by the author appeared ten years ago. The Package computes not only Laplace and z-transforms but also includes many routines from various domains of applications. Upon loading the Package, about one hundred and fifty new commands are added to the built-in commands of Mathematica. The code is placed in front of the already built-in code of Laplace and z-transformations of Mathematica so that built-in functions not covered by the Package remain available. The Package substantially enhances the Laplace and z-transformation facilities of Mathematica. The book is mainly designed for readers working in the field of applications</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebra / Data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integral Transforms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Symbolic and Algebraic Manipulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integral Transforms, Operational Calculus</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational Mathematics and Numerical Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Datenverarbeitung</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Informatik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Laplace-Transformation</subfield><subfield code="0">(DE-588)4034577-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Z-Transformation</subfield><subfield code="0">(DE-588)4191048-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematica</subfield><subfield code="g">Programm</subfield><subfield code="0">(DE-588)4268208-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Z-Transformation</subfield><subfield code="0">(DE-588)4191048-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mathematica</subfield><subfield code="g">Programm</subfield><subfield code="0">(DE-588)4268208-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Laplace-Transformation</subfield><subfield code="0">(DE-588)4034577-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Mathematica</subfield><subfield code="g">Programm</subfield><subfield code="0">(DE-588)4268208-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-0348-7846-3</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857386</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042421969 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:10Z |
institution | BVB |
isbn | 9783034878463 9783034895934 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857386 |
oclc_num | 905377220 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (X, 500 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Birkhäuser Basel |
record_format | marc |
spelling | Graf, Urs 1943- Verfasser (DE-588)143621475 aut Applied Laplace Transforms and z-Transforms for Scientists and Engineers a Computational Approach using a Mathematica Package by Urs Graf Basel Birkhäuser Basel 2004 1 Online-Ressource (X, 500 p) txt rdacontent c rdamedia cr rdacarrier The theory of Laplace transformation is an important part of the mathematical background required for engineers, physicists and mathematicians. Laplace transformation methods provide easy and effective techniques for solving many problems arising in various fields of science and engineering, especially for solving differential equations. What the Laplace transformation does in the field of differential equations, the z-transformation achieves for difference equations. The two theories are parallel and have many analogies. Laplace and z transformations are also referred to as operational calculus, but this notion is also used in a more restricted sense to denote the operational calculus of Mikusinski. This book does not use the operational calculus of Mikusinski, whose approach is based on abstract algebra and is not readily accessible to engineers and scientists. The symbolic computation capability of Mathematica can now be used in favor of the Laplace and z-transformations. The first version of the Mathematica Package LaplaceAndzTransforrns developed by the author appeared ten years ago. The Package computes not only Laplace and z-transforms but also includes many routines from various domains of applications. Upon loading the Package, about one hundred and fifty new commands are added to the built-in commands of Mathematica. The code is placed in front of the already built-in code of Laplace and z-transformations of Mathematica so that built-in functions not covered by the Package remain available. The Package substantially enhances the Laplace and z-transformation facilities of Mathematica. The book is mainly designed for readers working in the field of applications Mathematics Algebra / Data processing Functional analysis Integral Transforms Computer science / Mathematics Functional Analysis Symbolic and Algebraic Manipulation Integral Transforms, Operational Calculus Computational Mathematics and Numerical Analysis Datenverarbeitung Informatik Mathematik Laplace-Transformation (DE-588)4034577-4 gnd rswk-swf Z-Transformation (DE-588)4191048-5 gnd rswk-swf Mathematica Programm (DE-588)4268208-3 gnd rswk-swf Z-Transformation (DE-588)4191048-5 s Mathematica Programm (DE-588)4268208-3 s 1\p DE-604 Laplace-Transformation (DE-588)4034577-4 s 2\p DE-604 https://doi.org/10.1007/978-3-0348-7846-3 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Graf, Urs 1943- Applied Laplace Transforms and z-Transforms for Scientists and Engineers a Computational Approach using a Mathematica Package Mathematics Algebra / Data processing Functional analysis Integral Transforms Computer science / Mathematics Functional Analysis Symbolic and Algebraic Manipulation Integral Transforms, Operational Calculus Computational Mathematics and Numerical Analysis Datenverarbeitung Informatik Mathematik Laplace-Transformation (DE-588)4034577-4 gnd Z-Transformation (DE-588)4191048-5 gnd Mathematica Programm (DE-588)4268208-3 gnd |
subject_GND | (DE-588)4034577-4 (DE-588)4191048-5 (DE-588)4268208-3 |
title | Applied Laplace Transforms and z-Transforms for Scientists and Engineers a Computational Approach using a Mathematica Package |
title_auth | Applied Laplace Transforms and z-Transforms for Scientists and Engineers a Computational Approach using a Mathematica Package |
title_exact_search | Applied Laplace Transforms and z-Transforms for Scientists and Engineers a Computational Approach using a Mathematica Package |
title_full | Applied Laplace Transforms and z-Transforms for Scientists and Engineers a Computational Approach using a Mathematica Package by Urs Graf |
title_fullStr | Applied Laplace Transforms and z-Transforms for Scientists and Engineers a Computational Approach using a Mathematica Package by Urs Graf |
title_full_unstemmed | Applied Laplace Transforms and z-Transforms for Scientists and Engineers a Computational Approach using a Mathematica Package by Urs Graf |
title_short | Applied Laplace Transforms and z-Transforms for Scientists and Engineers |
title_sort | applied laplace transforms and z transforms for scientists and engineers a computational approach using a mathematica package |
title_sub | a Computational Approach using a Mathematica Package |
topic | Mathematics Algebra / Data processing Functional analysis Integral Transforms Computer science / Mathematics Functional Analysis Symbolic and Algebraic Manipulation Integral Transforms, Operational Calculus Computational Mathematics and Numerical Analysis Datenverarbeitung Informatik Mathematik Laplace-Transformation (DE-588)4034577-4 gnd Z-Transformation (DE-588)4191048-5 gnd Mathematica Programm (DE-588)4268208-3 gnd |
topic_facet | Mathematics Algebra / Data processing Functional analysis Integral Transforms Computer science / Mathematics Functional Analysis Symbolic and Algebraic Manipulation Integral Transforms, Operational Calculus Computational Mathematics and Numerical Analysis Datenverarbeitung Informatik Mathematik Laplace-Transformation Z-Transformation Mathematica Programm |
url | https://doi.org/10.1007/978-3-0348-7846-3 |
work_keys_str_mv | AT grafurs appliedlaplacetransformsandztransformsforscientistsandengineersacomputationalapproachusingamathematicapackage |