A Natural Introduction to Probability Theory:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Basel
Birkhäuser Basel
2003
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | According to Leo Breiman (1968), probability theory has a right and a left hand. The right hand refers to rigorous mathematics, and the left hand refers to 'proba bilistic thinking'. The combination of these two aspects makes probability theory one of the most exciting fields in mathematics. One can study probability as a purely mathematical enterprise, but even when you do that, all the concepts that arise do have a meaning on the intuitive level. For instance, we have to define what we mean exactly by independent events as a mathematical concept, but clearly, we all know that when we flip a coin twice, the event that the first gives heads is independent of the event that the second gives tails. Why have I written this book? I have been teaching probability for more than fifteen years now, and decided to do something with this experience. There are already many introductory texts about probability, and there had better be a good reason to write a new one. I will try to explain my reasons now |
Beschreibung: | 1 Online-Ressource (XI, 192 p) |
ISBN: | 9783034877862 9783764321888 |
DOI: | 10.1007/978-3-0348-7786-2 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042421963 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2003 |||| o||u| ||||||eng d | ||
020 | |a 9783034877862 |c Online |9 978-3-0348-7786-2 | ||
020 | |a 9783764321888 |c Print |9 978-3-7643-2188-8 | ||
024 | 7 | |a 10.1007/978-3-0348-7786-2 |2 doi | |
035 | |a (OCoLC)863936863 | ||
035 | |a (DE-599)BVBBV042421963 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 519.2 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Meester, Ronald |e Verfasser |4 aut | |
245 | 1 | 0 | |a A Natural Introduction to Probability Theory |c by Ronald Meester |
264 | 1 | |a Basel |b Birkhäuser Basel |c 2003 | |
300 | |a 1 Online-Ressource (XI, 192 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a According to Leo Breiman (1968), probability theory has a right and a left hand. The right hand refers to rigorous mathematics, and the left hand refers to 'proba bilistic thinking'. The combination of these two aspects makes probability theory one of the most exciting fields in mathematics. One can study probability as a purely mathematical enterprise, but even when you do that, all the concepts that arise do have a meaning on the intuitive level. For instance, we have to define what we mean exactly by independent events as a mathematical concept, but clearly, we all know that when we flip a coin twice, the event that the first gives heads is independent of the event that the second gives tails. Why have I written this book? I have been teaching probability for more than fifteen years now, and decided to do something with this experience. There are already many introductory texts about probability, and there had better be a good reason to write a new one. I will try to explain my reasons now | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Distribution (Probability theory) | |
650 | 4 | |a Probability Theory and Stochastic Processes | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Wahrscheinlichkeitstheorie |0 (DE-588)4079013-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Wahrscheinlichkeitstheorie |0 (DE-588)4079013-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-0348-7786-2 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857380 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153095681212416 |
---|---|
any_adam_object | |
author | Meester, Ronald |
author_facet | Meester, Ronald |
author_role | aut |
author_sort | Meester, Ronald |
author_variant | r m rm |
building | Verbundindex |
bvnumber | BV042421963 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863936863 (DE-599)BVBBV042421963 |
dewey-full | 519.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.2 |
dewey-search | 519.2 |
dewey-sort | 3519.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-0348-7786-2 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02530nmm a2200445zc 4500</leader><controlfield tag="001">BV042421963</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2003 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034877862</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-0348-7786-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783764321888</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-7643-2188-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-0348-7786-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863936863</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421963</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Meester, Ronald</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A Natural Introduction to Probability Theory</subfield><subfield code="c">by Ronald Meester</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">Birkhäuser Basel</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XI, 192 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">According to Leo Breiman (1968), probability theory has a right and a left hand. The right hand refers to rigorous mathematics, and the left hand refers to 'proba bilistic thinking'. The combination of these two aspects makes probability theory one of the most exciting fields in mathematics. One can study probability as a purely mathematical enterprise, but even when you do that, all the concepts that arise do have a meaning on the intuitive level. For instance, we have to define what we mean exactly by independent events as a mathematical concept, but clearly, we all know that when we flip a coin twice, the event that the first gives heads is independent of the event that the second gives tails. Why have I written this book? I have been teaching probability for more than fifteen years now, and decided to do something with this experience. There are already many introductory texts about probability, and there had better be a good reason to write a new one. I will try to explain my reasons now</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distribution (Probability theory)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability Theory and Stochastic Processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wahrscheinlichkeitstheorie</subfield><subfield code="0">(DE-588)4079013-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Wahrscheinlichkeitstheorie</subfield><subfield code="0">(DE-588)4079013-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-0348-7786-2</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857380</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042421963 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:10Z |
institution | BVB |
isbn | 9783034877862 9783764321888 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857380 |
oclc_num | 863936863 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XI, 192 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Birkhäuser Basel |
record_format | marc |
spelling | Meester, Ronald Verfasser aut A Natural Introduction to Probability Theory by Ronald Meester Basel Birkhäuser Basel 2003 1 Online-Ressource (XI, 192 p) txt rdacontent c rdamedia cr rdacarrier According to Leo Breiman (1968), probability theory has a right and a left hand. The right hand refers to rigorous mathematics, and the left hand refers to 'proba bilistic thinking'. The combination of these two aspects makes probability theory one of the most exciting fields in mathematics. One can study probability as a purely mathematical enterprise, but even when you do that, all the concepts that arise do have a meaning on the intuitive level. For instance, we have to define what we mean exactly by independent events as a mathematical concept, but clearly, we all know that when we flip a coin twice, the event that the first gives heads is independent of the event that the second gives tails. Why have I written this book? I have been teaching probability for more than fifteen years now, and decided to do something with this experience. There are already many introductory texts about probability, and there had better be a good reason to write a new one. I will try to explain my reasons now Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Mathematik Wahrscheinlichkeitstheorie (DE-588)4079013-7 gnd rswk-swf Wahrscheinlichkeitstheorie (DE-588)4079013-7 s 1\p DE-604 https://doi.org/10.1007/978-3-0348-7786-2 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Meester, Ronald A Natural Introduction to Probability Theory Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Mathematik Wahrscheinlichkeitstheorie (DE-588)4079013-7 gnd |
subject_GND | (DE-588)4079013-7 |
title | A Natural Introduction to Probability Theory |
title_auth | A Natural Introduction to Probability Theory |
title_exact_search | A Natural Introduction to Probability Theory |
title_full | A Natural Introduction to Probability Theory by Ronald Meester |
title_fullStr | A Natural Introduction to Probability Theory by Ronald Meester |
title_full_unstemmed | A Natural Introduction to Probability Theory by Ronald Meester |
title_short | A Natural Introduction to Probability Theory |
title_sort | a natural introduction to probability theory |
topic | Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Mathematik Wahrscheinlichkeitstheorie (DE-588)4079013-7 gnd |
topic_facet | Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Mathematik Wahrscheinlichkeitstheorie |
url | https://doi.org/10.1007/978-3-0348-7786-2 |
work_keys_str_mv | AT meesterronald anaturalintroductiontoprobabilitytheory |