The Commutant Lifting Approach to Interpolation Problems:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Basel
Birkhäuser Basel
1990
|
Schriftenreihe: | Operator Theory: Advances and Applications
44 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Classical H~ interpolation theory was conceived at the beginning of the century by C. Caratheodory, L. Fejer and I. Schur. The basic method, due to Schur, in solving these problems consists in applying the Möbius transform to peel off the data. In 1967, D. Sarason encompassed these classical interpolation problems in a representation theorem of operators commuting with special contractions. Shortly after that, in 1968, B. Sz. Nagy and C. Foias obtained a purely geometrical extension of Sarason's results. Actually, their result states that operators intertwining restrictions of co-isometries can be extended, by preserving their norm, to operators intertwining these co-isometries; starring with R. G. Douglas, P. S. Muhly and C. Pearcy, this is referred to as the commutant lifting theorem. In 1957, Z. Nehari considered an L ~ interpolation problem which in turn encompassed the same classical interpolation problems, as well as the computation of the distance of a function f in L ~ to H~. At about the sametime as Sarason's work, V. M. |
Beschreibung: | 1 Online-Ressource (XXIII, 632 p) |
ISBN: | 9783034877121 9783034877145 |
DOI: | 10.1007/978-3-0348-7712-1 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042421959 | ||
003 | DE-604 | ||
005 | 20211215 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1990 |||| o||u| ||||||eng d | ||
020 | |a 9783034877121 |c Online |9 978-3-0348-7712-1 | ||
020 | |a 9783034877145 |c Print |9 978-3-0348-7714-5 | ||
024 | 7 | |a 10.1007/978-3-0348-7712-1 |2 doi | |
035 | |a (OCoLC)864087922 | ||
035 | |a (DE-599)BVBBV042421959 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 50 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Foias, Ciprian |e Verfasser |4 aut | |
245 | 1 | 0 | |a The Commutant Lifting Approach to Interpolation Problems |c by Ciprian Foias, Arthur E. Frazho |
264 | 1 | |a Basel |b Birkhäuser Basel |c 1990 | |
300 | |a 1 Online-Ressource (XXIII, 632 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Operator Theory: Advances and Applications |v 44 | |
500 | |a Classical H~ interpolation theory was conceived at the beginning of the century by C. Caratheodory, L. Fejer and I. Schur. The basic method, due to Schur, in solving these problems consists in applying the Möbius transform to peel off the data. In 1967, D. Sarason encompassed these classical interpolation problems in a representation theorem of operators commuting with special contractions. Shortly after that, in 1968, B. Sz. Nagy and C. Foias obtained a purely geometrical extension of Sarason's results. Actually, their result states that operators intertwining restrictions of co-isometries can be extended, by preserving their norm, to operators intertwining these co-isometries; starring with R. G. Douglas, P. S. Muhly and C. Pearcy, this is referred to as the commutant lifting theorem. In 1957, Z. Nehari considered an L ~ interpolation problem which in turn encompassed the same classical interpolation problems, as well as the computation of the distance of a function f in L ~ to H~. At about the sametime as Sarason's work, V. M. | ||
650 | 4 | |a Science (General) | |
650 | 4 | |a Science, general | |
650 | 4 | |a Naturwissenschaft | |
650 | 0 | 7 | |a Liftungssatz |0 (DE-588)4265072-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kommutant |0 (DE-588)4265073-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Interpolation |0 (DE-588)4162121-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Liften |g Mathematik |0 (DE-588)4167655-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Interpolation |0 (DE-588)4162121-9 |D s |
689 | 0 | 1 | |a Kommutant |0 (DE-588)4265073-2 |D s |
689 | 0 | 2 | |a Liftungssatz |0 (DE-588)4265072-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Liften |g Mathematik |0 (DE-588)4167655-5 |D s |
689 | 1 | 1 | |a Interpolation |0 (DE-588)4162121-9 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Frazho, Arthur E. |e Sonstige |4 oth | |
830 | 0 | |a Operator Theory: Advances and Applications |v 44 |w (DE-604)BV035421307 |9 44 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-0348-7712-1 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857376 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153095670726656 |
---|---|
any_adam_object | |
author | Foias, Ciprian |
author_facet | Foias, Ciprian |
author_role | aut |
author_sort | Foias, Ciprian |
author_variant | c f cf |
building | Verbundindex |
bvnumber | BV042421959 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)864087922 (DE-599)BVBBV042421959 |
dewey-full | 50 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 050 - General serial publications |
dewey-raw | 50 |
dewey-search | 50 |
dewey-sort | 250 |
dewey-tens | 050 - General serial publications |
discipline | Allgemeine Naturwissenschaft Mathematik |
doi_str_mv | 10.1007/978-3-0348-7712-1 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03221nmm a2200577zcb4500</leader><controlfield tag="001">BV042421959</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20211215 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1990 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034877121</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-0348-7712-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034877145</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-0348-7714-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-0348-7712-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)864087922</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421959</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">50</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Foias, Ciprian</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Commutant Lifting Approach to Interpolation Problems</subfield><subfield code="c">by Ciprian Foias, Arthur E. Frazho</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">Birkhäuser Basel</subfield><subfield code="c">1990</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XXIII, 632 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Operator Theory: Advances and Applications</subfield><subfield code="v">44</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Classical H~ interpolation theory was conceived at the beginning of the century by C. Caratheodory, L. Fejer and I. Schur. The basic method, due to Schur, in solving these problems consists in applying the Möbius transform to peel off the data. In 1967, D. Sarason encompassed these classical interpolation problems in a representation theorem of operators commuting with special contractions. Shortly after that, in 1968, B. Sz. Nagy and C. Foias obtained a purely geometrical extension of Sarason's results. Actually, their result states that operators intertwining restrictions of co-isometries can be extended, by preserving their norm, to operators intertwining these co-isometries; starring with R. G. Douglas, P. S. Muhly and C. Pearcy, this is referred to as the commutant lifting theorem. In 1957, Z. Nehari considered an L ~ interpolation problem which in turn encompassed the same classical interpolation problems, as well as the computation of the distance of a function f in L ~ to H~. At about the sametime as Sarason's work, V. M.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Science (General)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Science, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Naturwissenschaft</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Liftungssatz</subfield><subfield code="0">(DE-588)4265072-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kommutant</subfield><subfield code="0">(DE-588)4265073-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Interpolation</subfield><subfield code="0">(DE-588)4162121-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Liften</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4167655-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Interpolation</subfield><subfield code="0">(DE-588)4162121-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Kommutant</subfield><subfield code="0">(DE-588)4265073-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Liftungssatz</subfield><subfield code="0">(DE-588)4265072-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Liften</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4167655-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Interpolation</subfield><subfield code="0">(DE-588)4162121-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Frazho, Arthur E.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Operator Theory: Advances and Applications</subfield><subfield code="v">44</subfield><subfield code="w">(DE-604)BV035421307</subfield><subfield code="9">44</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-0348-7712-1</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857376</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042421959 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:10Z |
institution | BVB |
isbn | 9783034877121 9783034877145 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857376 |
oclc_num | 864087922 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XXIII, 632 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1990 |
publishDateSearch | 1990 |
publishDateSort | 1990 |
publisher | Birkhäuser Basel |
record_format | marc |
series | Operator Theory: Advances and Applications |
series2 | Operator Theory: Advances and Applications |
spelling | Foias, Ciprian Verfasser aut The Commutant Lifting Approach to Interpolation Problems by Ciprian Foias, Arthur E. Frazho Basel Birkhäuser Basel 1990 1 Online-Ressource (XXIII, 632 p) txt rdacontent c rdamedia cr rdacarrier Operator Theory: Advances and Applications 44 Classical H~ interpolation theory was conceived at the beginning of the century by C. Caratheodory, L. Fejer and I. Schur. The basic method, due to Schur, in solving these problems consists in applying the Möbius transform to peel off the data. In 1967, D. Sarason encompassed these classical interpolation problems in a representation theorem of operators commuting with special contractions. Shortly after that, in 1968, B. Sz. Nagy and C. Foias obtained a purely geometrical extension of Sarason's results. Actually, their result states that operators intertwining restrictions of co-isometries can be extended, by preserving their norm, to operators intertwining these co-isometries; starring with R. G. Douglas, P. S. Muhly and C. Pearcy, this is referred to as the commutant lifting theorem. In 1957, Z. Nehari considered an L ~ interpolation problem which in turn encompassed the same classical interpolation problems, as well as the computation of the distance of a function f in L ~ to H~. At about the sametime as Sarason's work, V. M. Science (General) Science, general Naturwissenschaft Liftungssatz (DE-588)4265072-0 gnd rswk-swf Kommutant (DE-588)4265073-2 gnd rswk-swf Interpolation (DE-588)4162121-9 gnd rswk-swf Liften Mathematik (DE-588)4167655-5 gnd rswk-swf Interpolation (DE-588)4162121-9 s Kommutant (DE-588)4265073-2 s Liftungssatz (DE-588)4265072-0 s 1\p DE-604 Liften Mathematik (DE-588)4167655-5 s 2\p DE-604 Frazho, Arthur E. Sonstige oth Operator Theory: Advances and Applications 44 (DE-604)BV035421307 44 https://doi.org/10.1007/978-3-0348-7712-1 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Foias, Ciprian The Commutant Lifting Approach to Interpolation Problems Operator Theory: Advances and Applications Science (General) Science, general Naturwissenschaft Liftungssatz (DE-588)4265072-0 gnd Kommutant (DE-588)4265073-2 gnd Interpolation (DE-588)4162121-9 gnd Liften Mathematik (DE-588)4167655-5 gnd |
subject_GND | (DE-588)4265072-0 (DE-588)4265073-2 (DE-588)4162121-9 (DE-588)4167655-5 |
title | The Commutant Lifting Approach to Interpolation Problems |
title_auth | The Commutant Lifting Approach to Interpolation Problems |
title_exact_search | The Commutant Lifting Approach to Interpolation Problems |
title_full | The Commutant Lifting Approach to Interpolation Problems by Ciprian Foias, Arthur E. Frazho |
title_fullStr | The Commutant Lifting Approach to Interpolation Problems by Ciprian Foias, Arthur E. Frazho |
title_full_unstemmed | The Commutant Lifting Approach to Interpolation Problems by Ciprian Foias, Arthur E. Frazho |
title_short | The Commutant Lifting Approach to Interpolation Problems |
title_sort | the commutant lifting approach to interpolation problems |
topic | Science (General) Science, general Naturwissenschaft Liftungssatz (DE-588)4265072-0 gnd Kommutant (DE-588)4265073-2 gnd Interpolation (DE-588)4162121-9 gnd Liften Mathematik (DE-588)4167655-5 gnd |
topic_facet | Science (General) Science, general Naturwissenschaft Liftungssatz Kommutant Interpolation Liften Mathematik |
url | https://doi.org/10.1007/978-3-0348-7712-1 |
volume_link | (DE-604)BV035421307 |
work_keys_str_mv | AT foiasciprian thecommutantliftingapproachtointerpolationproblems AT frazhoarthure thecommutantliftingapproachtointerpolationproblems |