A Primer of Real Analytic Functions:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Basel
Birkhäuser Basel
1992
|
Schriftenreihe: | Basler Lehrbücher, A Series of Advanced Textbooks in Mathematics
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The subject of real analytic functions is one of the oldest in mathematical analysis. Today it is encountered early in ones mathematical training: the first taste usually comes in calculus. While most working mathematicians use real analytic functions from time to time in their work, the vast lore of real analytic functions remains obscure and buried in the literature. It is remarkable that the most accessible treatment of Puiseux's theorem is in Lefschetz's quite old Algebraic Geometry, that the clearest discussion of resolution of singularities for real analytic manifolds is in a book review by Michael Atiyah, that there is no comprehensive discussion in print of the embedding problem for real analytic manifolds. We have had occasion in our collaborative research to become acquainted with both the history and the scope of the theory of real analytic functions. It seems both appropriate and timely for us to gather together this information in a single volume. The material presented here is of three kinds. The elementary topics, covered in Chapter 1, are presented in great detail. Even results like a real analytic inverse function theorem are difficult to find in the literature, and we take pains here to present such topics carefully. Topics of middling difficulty, such as separate real analyticity, Puiseux series, the FBI transform, and related ideas (Chapters 2-4), are covered thoroughly but rather more briskly |
Beschreibung: | 1 Online-Ressource (X, 184 p) |
ISBN: | 9783034876445 9783034876469 |
DOI: | 10.1007/978-3-0348-7644-5 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042421951 | ||
003 | DE-604 | ||
005 | 20171221 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1992 |||| o||u| ||||||eng d | ||
020 | |a 9783034876445 |c Online |9 978-3-0348-7644-5 | ||
020 | |a 9783034876469 |c Print |9 978-3-0348-7646-9 | ||
024 | 7 | |a 10.1007/978-3-0348-7644-5 |2 doi | |
035 | |a (OCoLC)863881888 | ||
035 | |a (DE-599)BVBBV042421951 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 50 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Krantz, Steven G. |e Verfasser |4 aut | |
245 | 1 | 0 | |a A Primer of Real Analytic Functions |c by Steven G. Krantz, Harold R. Parks |
264 | 1 | |a Basel |b Birkhäuser Basel |c 1992 | |
300 | |a 1 Online-Ressource (X, 184 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Basler Lehrbücher, A Series of Advanced Textbooks in Mathematics | |
500 | |a The subject of real analytic functions is one of the oldest in mathematical analysis. Today it is encountered early in ones mathematical training: the first taste usually comes in calculus. While most working mathematicians use real analytic functions from time to time in their work, the vast lore of real analytic functions remains obscure and buried in the literature. It is remarkable that the most accessible treatment of Puiseux's theorem is in Lefschetz's quite old Algebraic Geometry, that the clearest discussion of resolution of singularities for real analytic manifolds is in a book review by Michael Atiyah, that there is no comprehensive discussion in print of the embedding problem for real analytic manifolds. We have had occasion in our collaborative research to become acquainted with both the history and the scope of the theory of real analytic functions. It seems both appropriate and timely for us to gather together this information in a single volume. The material presented here is of three kinds. The elementary topics, covered in Chapter 1, are presented in great detail. Even results like a real analytic inverse function theorem are difficult to find in the literature, and we take pains here to present such topics carefully. Topics of middling difficulty, such as separate real analyticity, Puiseux series, the FBI transform, and related ideas (Chapters 2-4), are covered thoroughly but rather more briskly | ||
650 | 4 | |a Science (General) | |
650 | 4 | |a Science, general | |
650 | 4 | |a Naturwissenschaft | |
650 | 0 | 7 | |a Reelle Funktion |0 (DE-588)4048918-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Analytische Funktion |0 (DE-588)4142348-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Reelle Funktion |0 (DE-588)4048918-8 |D s |
689 | 0 | 1 | |a Analytische Funktion |0 (DE-588)4142348-3 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Parks, Harold R. |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-0348-7644-5 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857368 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153095651852288 |
---|---|
any_adam_object | |
author | Krantz, Steven G. |
author_facet | Krantz, Steven G. |
author_role | aut |
author_sort | Krantz, Steven G. |
author_variant | s g k sg sgk |
building | Verbundindex |
bvnumber | BV042421951 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863881888 (DE-599)BVBBV042421951 |
dewey-full | 50 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 050 - General serial publications |
dewey-raw | 50 |
dewey-search | 50 |
dewey-sort | 250 |
dewey-tens | 050 - General serial publications |
discipline | Allgemeine Naturwissenschaft Mathematik |
doi_str_mv | 10.1007/978-3-0348-7644-5 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03139nmm a2200481zc 4500</leader><controlfield tag="001">BV042421951</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20171221 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1992 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034876445</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-0348-7644-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034876469</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-0348-7646-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-0348-7644-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863881888</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421951</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">50</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Krantz, Steven G.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A Primer of Real Analytic Functions</subfield><subfield code="c">by Steven G. Krantz, Harold R. Parks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">Birkhäuser Basel</subfield><subfield code="c">1992</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 184 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Basler Lehrbücher, A Series of Advanced Textbooks in Mathematics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The subject of real analytic functions is one of the oldest in mathematical analysis. Today it is encountered early in ones mathematical training: the first taste usually comes in calculus. While most working mathematicians use real analytic functions from time to time in their work, the vast lore of real analytic functions remains obscure and buried in the literature. It is remarkable that the most accessible treatment of Puiseux's theorem is in Lefschetz's quite old Algebraic Geometry, that the clearest discussion of resolution of singularities for real analytic manifolds is in a book review by Michael Atiyah, that there is no comprehensive discussion in print of the embedding problem for real analytic manifolds. We have had occasion in our collaborative research to become acquainted with both the history and the scope of the theory of real analytic functions. It seems both appropriate and timely for us to gather together this information in a single volume. The material presented here is of three kinds. The elementary topics, covered in Chapter 1, are presented in great detail. Even results like a real analytic inverse function theorem are difficult to find in the literature, and we take pains here to present such topics carefully. Topics of middling difficulty, such as separate real analyticity, Puiseux series, the FBI transform, and related ideas (Chapters 2-4), are covered thoroughly but rather more briskly</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Science (General)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Science, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Naturwissenschaft</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Reelle Funktion</subfield><subfield code="0">(DE-588)4048918-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Analytische Funktion</subfield><subfield code="0">(DE-588)4142348-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Reelle Funktion</subfield><subfield code="0">(DE-588)4048918-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Analytische Funktion</subfield><subfield code="0">(DE-588)4142348-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Parks, Harold R.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-0348-7644-5</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857368</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042421951 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:10Z |
institution | BVB |
isbn | 9783034876445 9783034876469 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857368 |
oclc_num | 863881888 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (X, 184 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1992 |
publishDateSearch | 1992 |
publishDateSort | 1992 |
publisher | Birkhäuser Basel |
record_format | marc |
series2 | Basler Lehrbücher, A Series of Advanced Textbooks in Mathematics |
spelling | Krantz, Steven G. Verfasser aut A Primer of Real Analytic Functions by Steven G. Krantz, Harold R. Parks Basel Birkhäuser Basel 1992 1 Online-Ressource (X, 184 p) txt rdacontent c rdamedia cr rdacarrier Basler Lehrbücher, A Series of Advanced Textbooks in Mathematics The subject of real analytic functions is one of the oldest in mathematical analysis. Today it is encountered early in ones mathematical training: the first taste usually comes in calculus. While most working mathematicians use real analytic functions from time to time in their work, the vast lore of real analytic functions remains obscure and buried in the literature. It is remarkable that the most accessible treatment of Puiseux's theorem is in Lefschetz's quite old Algebraic Geometry, that the clearest discussion of resolution of singularities for real analytic manifolds is in a book review by Michael Atiyah, that there is no comprehensive discussion in print of the embedding problem for real analytic manifolds. We have had occasion in our collaborative research to become acquainted with both the history and the scope of the theory of real analytic functions. It seems both appropriate and timely for us to gather together this information in a single volume. The material presented here is of three kinds. The elementary topics, covered in Chapter 1, are presented in great detail. Even results like a real analytic inverse function theorem are difficult to find in the literature, and we take pains here to present such topics carefully. Topics of middling difficulty, such as separate real analyticity, Puiseux series, the FBI transform, and related ideas (Chapters 2-4), are covered thoroughly but rather more briskly Science (General) Science, general Naturwissenschaft Reelle Funktion (DE-588)4048918-8 gnd rswk-swf Analytische Funktion (DE-588)4142348-3 gnd rswk-swf Reelle Funktion (DE-588)4048918-8 s Analytische Funktion (DE-588)4142348-3 s 1\p DE-604 Parks, Harold R. Sonstige oth https://doi.org/10.1007/978-3-0348-7644-5 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Krantz, Steven G. A Primer of Real Analytic Functions Science (General) Science, general Naturwissenschaft Reelle Funktion (DE-588)4048918-8 gnd Analytische Funktion (DE-588)4142348-3 gnd |
subject_GND | (DE-588)4048918-8 (DE-588)4142348-3 |
title | A Primer of Real Analytic Functions |
title_auth | A Primer of Real Analytic Functions |
title_exact_search | A Primer of Real Analytic Functions |
title_full | A Primer of Real Analytic Functions by Steven G. Krantz, Harold R. Parks |
title_fullStr | A Primer of Real Analytic Functions by Steven G. Krantz, Harold R. Parks |
title_full_unstemmed | A Primer of Real Analytic Functions by Steven G. Krantz, Harold R. Parks |
title_short | A Primer of Real Analytic Functions |
title_sort | a primer of real analytic functions |
topic | Science (General) Science, general Naturwissenschaft Reelle Funktion (DE-588)4048918-8 gnd Analytische Funktion (DE-588)4142348-3 gnd |
topic_facet | Science (General) Science, general Naturwissenschaft Reelle Funktion Analytische Funktion |
url | https://doi.org/10.1007/978-3-0348-7644-5 |
work_keys_str_mv | AT krantzsteveng aprimerofrealanalyticfunctions AT parksharoldr aprimerofrealanalyticfunctions |