Lectures on Hermitian-Einstein Metrics for Stable Bundles and Kähler-Einstein Metrics: Delivered at the German Mathematical Society Seminar in Düsseldorf in June, 1986
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Basel
Birkhäuser Basel
1987
|
Schriftenreihe: | DMV Seminar
8 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | These notes are based on the lectures I delivered at the German Mathematical Society Seminar in Schloss Michkeln in DUsseldorf in June. 1986 on Hermitian-Einstein metrics for stable bundles and Kahler-Einstein metrics. The purpose of these notes is to present to the reader the state-of-the-art results in the simplest and the most comprehensible form using (at least from my own subjective viewpoint) the most natural approach. The presentation in these notes is reasonably self-contained and prerequisi tes are kept to a minimum. Most steps in the estimates are reduced as much as possible to the most basic procedures such as integration by parts and the maximum principle. When less basic procedures are used such as the Sobolev and Calderon-Zygmund inequalities and the interior Schauder estimates. references are given for the reader to look them up. A considerable amount of heuristic and intuitive discussions are included to explain why certain steps are used or certain notions introduced. The inclusion of such discussions makes the style of the presentation at some places more conversational than what is usually expected of rigorous mathemtical prese"ntations. For the problems of Hermi tian-Einstein metrics for stable bundles and Kahler-Einstein metrics one can use either the continuity method or the heat equation method. These two methods are so very intimately related that in many cases the relationship betwen them borders on equivalence. What counts most is the a. priori estimates. The kind of scaffolding one hangs the a |
Beschreibung: | 1 Online-Ressource (172 p) |
ISBN: | 9783034874861 9783764319311 |
DOI: | 10.1007/978-3-0348-7486-1 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042421933 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1987 |||| o||u| ||||||eng d | ||
020 | |a 9783034874861 |c Online |9 978-3-0348-7486-1 | ||
020 | |a 9783764319311 |c Print |9 978-3-7643-1931-1 | ||
024 | 7 | |a 10.1007/978-3-0348-7486-1 |2 doi | |
035 | |a (OCoLC)864035012 | ||
035 | |a (DE-599)BVBBV042421933 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 510 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Siu, Yum-Tong |e Verfasser |4 aut | |
245 | 1 | 0 | |a Lectures on Hermitian-Einstein Metrics for Stable Bundles and Kähler-Einstein Metrics |b Delivered at the German Mathematical Society Seminar in Düsseldorf in June, 1986 |c by Yum-Tong Siu |
264 | 1 | |a Basel |b Birkhäuser Basel |c 1987 | |
300 | |a 1 Online-Ressource (172 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a DMV Seminar |v 8 | |
500 | |a These notes are based on the lectures I delivered at the German Mathematical Society Seminar in Schloss Michkeln in DUsseldorf in June. 1986 on Hermitian-Einstein metrics for stable bundles and Kahler-Einstein metrics. The purpose of these notes is to present to the reader the state-of-the-art results in the simplest and the most comprehensible form using (at least from my own subjective viewpoint) the most natural approach. The presentation in these notes is reasonably self-contained and prerequisi tes are kept to a minimum. Most steps in the estimates are reduced as much as possible to the most basic procedures such as integration by parts and the maximum principle. When less basic procedures are used such as the Sobolev and Calderon-Zygmund inequalities and the interior Schauder estimates. references are given for the reader to look them up. A considerable amount of heuristic and intuitive discussions are included to explain why certain steps are used or certain notions introduced. The inclusion of such discussions makes the style of the presentation at some places more conversational than what is usually expected of rigorous mathemtical prese"ntations. For the problems of Hermi tian-Einstein metrics for stable bundles and Kahler-Einstein metrics one can use either the continuity method or the heat equation method. These two methods are so very intimately related that in many cases the relationship betwen them borders on equivalence. What counts most is the a. priori estimates. The kind of scaffolding one hangs the a | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Mathematics, general | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Hermitescher Raum |0 (DE-588)4159618-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kähler-Mannigfaltigkeit |0 (DE-588)4162978-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Riemannscher Raum |0 (DE-588)4128295-4 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)1071861417 |a Konferenzschrift |2 gnd-content | |
689 | 0 | 0 | |a Riemannscher Raum |0 (DE-588)4128295-4 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
689 | 1 | 0 | |a Hermitescher Raum |0 (DE-588)4159618-3 |D s |
689 | 1 | |8 3\p |5 DE-604 | |
689 | 2 | 0 | |a Kähler-Mannigfaltigkeit |0 (DE-588)4162978-4 |D s |
689 | 2 | |8 4\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-0348-7486-1 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857350 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153095582646272 |
---|---|
any_adam_object | |
author | Siu, Yum-Tong |
author_facet | Siu, Yum-Tong |
author_role | aut |
author_sort | Siu, Yum-Tong |
author_variant | y t s yts |
building | Verbundindex |
bvnumber | BV042421933 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)864035012 (DE-599)BVBBV042421933 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-0348-7486-1 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03764nmm a2200565zcb4500</leader><controlfield tag="001">BV042421933</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1987 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034874861</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-0348-7486-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783764319311</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-7643-1931-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-0348-7486-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)864035012</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421933</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Siu, Yum-Tong</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lectures on Hermitian-Einstein Metrics for Stable Bundles and Kähler-Einstein Metrics</subfield><subfield code="b">Delivered at the German Mathematical Society Seminar in Düsseldorf in June, 1986</subfield><subfield code="c">by Yum-Tong Siu</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">Birkhäuser Basel</subfield><subfield code="c">1987</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (172 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">DMV Seminar</subfield><subfield code="v">8</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">These notes are based on the lectures I delivered at the German Mathematical Society Seminar in Schloss Michkeln in DUsseldorf in June. 1986 on Hermitian-Einstein metrics for stable bundles and Kahler-Einstein metrics. The purpose of these notes is to present to the reader the state-of-the-art results in the simplest and the most comprehensible form using (at least from my own subjective viewpoint) the most natural approach. The presentation in these notes is reasonably self-contained and prerequisi tes are kept to a minimum. Most steps in the estimates are reduced as much as possible to the most basic procedures such as integration by parts and the maximum principle. When less basic procedures are used such as the Sobolev and Calderon-Zygmund inequalities and the interior Schauder estimates. references are given for the reader to look them up. A considerable amount of heuristic and intuitive discussions are included to explain why certain steps are used or certain notions introduced. The inclusion of such discussions makes the style of the presentation at some places more conversational than what is usually expected of rigorous mathemtical prese"ntations. For the problems of Hermi tian-Einstein metrics for stable bundles and Kahler-Einstein metrics one can use either the continuity method or the heat equation method. These two methods are so very intimately related that in many cases the relationship betwen them borders on equivalence. What counts most is the a. priori estimates. The kind of scaffolding one hangs the a</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hermitescher Raum</subfield><subfield code="0">(DE-588)4159618-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kähler-Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4162978-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Riemannscher Raum</subfield><subfield code="0">(DE-588)4128295-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Riemannscher Raum</subfield><subfield code="0">(DE-588)4128295-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Hermitescher Raum</subfield><subfield code="0">(DE-588)4159618-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Kähler-Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4162978-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-0348-7486-1</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857350</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)1071861417 Konferenzschrift gnd-content |
genre_facet | Konferenzschrift |
id | DE-604.BV042421933 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:10Z |
institution | BVB |
isbn | 9783034874861 9783764319311 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857350 |
oclc_num | 864035012 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (172 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1987 |
publishDateSearch | 1987 |
publishDateSort | 1987 |
publisher | Birkhäuser Basel |
record_format | marc |
series2 | DMV Seminar |
spelling | Siu, Yum-Tong Verfasser aut Lectures on Hermitian-Einstein Metrics for Stable Bundles and Kähler-Einstein Metrics Delivered at the German Mathematical Society Seminar in Düsseldorf in June, 1986 by Yum-Tong Siu Basel Birkhäuser Basel 1987 1 Online-Ressource (172 p) txt rdacontent c rdamedia cr rdacarrier DMV Seminar 8 These notes are based on the lectures I delivered at the German Mathematical Society Seminar in Schloss Michkeln in DUsseldorf in June. 1986 on Hermitian-Einstein metrics for stable bundles and Kahler-Einstein metrics. The purpose of these notes is to present to the reader the state-of-the-art results in the simplest and the most comprehensible form using (at least from my own subjective viewpoint) the most natural approach. The presentation in these notes is reasonably self-contained and prerequisi tes are kept to a minimum. Most steps in the estimates are reduced as much as possible to the most basic procedures such as integration by parts and the maximum principle. When less basic procedures are used such as the Sobolev and Calderon-Zygmund inequalities and the interior Schauder estimates. references are given for the reader to look them up. A considerable amount of heuristic and intuitive discussions are included to explain why certain steps are used or certain notions introduced. The inclusion of such discussions makes the style of the presentation at some places more conversational than what is usually expected of rigorous mathemtical prese"ntations. For the problems of Hermi tian-Einstein metrics for stable bundles and Kahler-Einstein metrics one can use either the continuity method or the heat equation method. These two methods are so very intimately related that in many cases the relationship betwen them borders on equivalence. What counts most is the a. priori estimates. The kind of scaffolding one hangs the a Mathematics Mathematics, general Mathematik Hermitescher Raum (DE-588)4159618-3 gnd rswk-swf Kähler-Mannigfaltigkeit (DE-588)4162978-4 gnd rswk-swf Riemannscher Raum (DE-588)4128295-4 gnd rswk-swf 1\p (DE-588)1071861417 Konferenzschrift gnd-content Riemannscher Raum (DE-588)4128295-4 s 2\p DE-604 Hermitescher Raum (DE-588)4159618-3 s 3\p DE-604 Kähler-Mannigfaltigkeit (DE-588)4162978-4 s 4\p DE-604 https://doi.org/10.1007/978-3-0348-7486-1 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Siu, Yum-Tong Lectures on Hermitian-Einstein Metrics for Stable Bundles and Kähler-Einstein Metrics Delivered at the German Mathematical Society Seminar in Düsseldorf in June, 1986 Mathematics Mathematics, general Mathematik Hermitescher Raum (DE-588)4159618-3 gnd Kähler-Mannigfaltigkeit (DE-588)4162978-4 gnd Riemannscher Raum (DE-588)4128295-4 gnd |
subject_GND | (DE-588)4159618-3 (DE-588)4162978-4 (DE-588)4128295-4 (DE-588)1071861417 |
title | Lectures on Hermitian-Einstein Metrics for Stable Bundles and Kähler-Einstein Metrics Delivered at the German Mathematical Society Seminar in Düsseldorf in June, 1986 |
title_auth | Lectures on Hermitian-Einstein Metrics for Stable Bundles and Kähler-Einstein Metrics Delivered at the German Mathematical Society Seminar in Düsseldorf in June, 1986 |
title_exact_search | Lectures on Hermitian-Einstein Metrics for Stable Bundles and Kähler-Einstein Metrics Delivered at the German Mathematical Society Seminar in Düsseldorf in June, 1986 |
title_full | Lectures on Hermitian-Einstein Metrics for Stable Bundles and Kähler-Einstein Metrics Delivered at the German Mathematical Society Seminar in Düsseldorf in June, 1986 by Yum-Tong Siu |
title_fullStr | Lectures on Hermitian-Einstein Metrics for Stable Bundles and Kähler-Einstein Metrics Delivered at the German Mathematical Society Seminar in Düsseldorf in June, 1986 by Yum-Tong Siu |
title_full_unstemmed | Lectures on Hermitian-Einstein Metrics for Stable Bundles and Kähler-Einstein Metrics Delivered at the German Mathematical Society Seminar in Düsseldorf in June, 1986 by Yum-Tong Siu |
title_short | Lectures on Hermitian-Einstein Metrics for Stable Bundles and Kähler-Einstein Metrics |
title_sort | lectures on hermitian einstein metrics for stable bundles and kahler einstein metrics delivered at the german mathematical society seminar in dusseldorf in june 1986 |
title_sub | Delivered at the German Mathematical Society Seminar in Düsseldorf in June, 1986 |
topic | Mathematics Mathematics, general Mathematik Hermitescher Raum (DE-588)4159618-3 gnd Kähler-Mannigfaltigkeit (DE-588)4162978-4 gnd Riemannscher Raum (DE-588)4128295-4 gnd |
topic_facet | Mathematics Mathematics, general Mathematik Hermitescher Raum Kähler-Mannigfaltigkeit Riemannscher Raum Konferenzschrift |
url | https://doi.org/10.1007/978-3-0348-7486-1 |
work_keys_str_mv | AT siuyumtong lecturesonhermitianeinsteinmetricsforstablebundlesandkahlereinsteinmetricsdeliveredatthegermanmathematicalsocietyseminarindusseldorfinjune1986 |