Constructive Methods of Wiener-Hopf Factorization:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Basel
Birkhäuser Basel
1986
|
Schriftenreihe: | OT 21: Operator Theory: Advances and Applications
21 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The main part of this paper concerns Toeplitz operators of which the symbol W is an m x m matrix function defined on a disconnected curve r. The curve r is assumed to be the union of s + 1 nonintersecting simple smooth closed contours rOo r ... rs which form the positively l oriented boundary of a finitely connected bounded domain in t. Our main requirement on the symbol W is that on each contour rj the function W is the restriction of a rational matrix function Wj which does not have poles and zeros on rj and at infinity. Using the realization theorem from system theory (see. e. g . [1]. Chapter 2) the rational matrix function Wj (which differs from contour to contour) may be written in the form 1 (0. 1) W . (A) = I + C. (A - A. f B. A E r· J J J J J where Aj is a square matrix of size nj x n. say. B and C are j j j matrices of sizes n. x m and m x n . respectively. and the matrices A. J x J J and Aj = Aj - BjC have no eigenvalues on r . (In (0. 1) the functions j j Wj are normalized to I at infinity |
Beschreibung: | 1 Online-Ressource (XII, 410 p) |
ISBN: | 9783034874182 9783034874205 |
DOI: | 10.1007/978-3-0348-7418-2 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042421928 | ||
003 | DE-604 | ||
005 | 20190315 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1986 |||| o||u| ||||||eng d | ||
020 | |a 9783034874182 |c Online |9 978-3-0348-7418-2 | ||
020 | |a 9783034874205 |c Print |9 978-3-0348-7420-5 | ||
024 | 7 | |a 10.1007/978-3-0348-7418-2 |2 doi | |
035 | |a (OCoLC)863976968 | ||
035 | |a (DE-599)BVBBV042421928 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 510 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Gohberg, Yiśrāʿēl Z. |d 1928-2009 |e Verfasser |0 (DE-588)118915878 |4 aut | |
245 | 1 | 0 | |a Constructive Methods of Wiener-Hopf Factorization |c edited by I. Gohberg, M. A. Kaashoek |
264 | 1 | |a Basel |b Birkhäuser Basel |c 1986 | |
300 | |a 1 Online-Ressource (XII, 410 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a OT 21: Operator Theory: Advances and Applications |v 21 | |
500 | |a The main part of this paper concerns Toeplitz operators of which the symbol W is an m x m matrix function defined on a disconnected curve r. The curve r is assumed to be the union of s + 1 nonintersecting simple smooth closed contours rOo r ... rs which form the positively l oriented boundary of a finitely connected bounded domain in t. Our main requirement on the symbol W is that on each contour rj the function W is the restriction of a rational matrix function Wj which does not have poles and zeros on rj and at infinity. Using the realization theorem from system theory (see. e. g . [1]. Chapter 2) the rational matrix function Wj (which differs from contour to contour) may be written in the form 1 (0. 1) W . (A) = I + C. (A - A. f B. A E r· J J J J J where Aj is a square matrix of size nj x n. say. B and C are j j j matrices of sizes n. x m and m x n . respectively. and the matrices A. J x J J and Aj = Aj - BjC have no eigenvalues on r . (In (0. 1) the functions j j Wj are normalized to I at infinity | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Mathematics, general | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Operator |0 (DE-588)4130529-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Konstruktive Methode |0 (DE-588)4165106-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Funktion |g Mathematik |0 (DE-588)4071510-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wiener-Hopf-Faktorisierung |0 (DE-588)4128926-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Faktor |g Algebra |0 (DE-588)4234581-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Wiener-Hopf-Faktorisierung |0 (DE-588)4128926-2 |D s |
689 | 0 | 1 | |a Konstruktive Methode |0 (DE-588)4165106-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Operator |0 (DE-588)4130529-2 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Funktion |g Mathematik |0 (DE-588)4071510-3 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
689 | 3 | 0 | |a Faktor |g Algebra |0 (DE-588)4234581-9 |D s |
689 | 3 | |8 4\p |5 DE-604 | |
700 | 1 | |a Kaashoek, Marinus A. |d 1937- |e Sonstige |0 (DE-588)122738497 |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-0348-7418-2 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857345 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153095602569216 |
---|---|
any_adam_object | |
author | Gohberg, Yiśrāʿēl Z. 1928-2009 |
author_GND | (DE-588)118915878 (DE-588)122738497 |
author_facet | Gohberg, Yiśrāʿēl Z. 1928-2009 |
author_role | aut |
author_sort | Gohberg, Yiśrāʿēl Z. 1928-2009 |
author_variant | y z g yz yzg |
building | Verbundindex |
bvnumber | BV042421928 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863976968 (DE-599)BVBBV042421928 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-0348-7418-2 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03499nmm a2200625zcb4500</leader><controlfield tag="001">BV042421928</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190315 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1986 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034874182</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-0348-7418-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034874205</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-0348-7420-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-0348-7418-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863976968</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421928</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gohberg, Yiśrāʿēl Z.</subfield><subfield code="d">1928-2009</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)118915878</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Constructive Methods of Wiener-Hopf Factorization</subfield><subfield code="c">edited by I. Gohberg, M. A. Kaashoek</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">Birkhäuser Basel</subfield><subfield code="c">1986</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 410 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">OT 21: Operator Theory: Advances and Applications</subfield><subfield code="v">21</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The main part of this paper concerns Toeplitz operators of which the symbol W is an m x m matrix function defined on a disconnected curve r. The curve r is assumed to be the union of s + 1 nonintersecting simple smooth closed contours rOo r ... rs which form the positively l oriented boundary of a finitely connected bounded domain in t. Our main requirement on the symbol W is that on each contour rj the function W is the restriction of a rational matrix function Wj which does not have poles and zeros on rj and at infinity. Using the realization theorem from system theory (see. e. g . [1]. Chapter 2) the rational matrix function Wj (which differs from contour to contour) may be written in the form 1 (0. 1) W . (A) = I + C. (A - A. f B. A E r· J J J J J where Aj is a square matrix of size nj x n. say. B and C are j j j matrices of sizes n. x m and m x n . respectively. and the matrices A. J x J J and Aj = Aj - BjC have no eigenvalues on r . (In (0. 1) the functions j j Wj are normalized to I at infinity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Operator</subfield><subfield code="0">(DE-588)4130529-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Konstruktive Methode</subfield><subfield code="0">(DE-588)4165106-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktion</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4071510-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wiener-Hopf-Faktorisierung</subfield><subfield code="0">(DE-588)4128926-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Faktor</subfield><subfield code="g">Algebra</subfield><subfield code="0">(DE-588)4234581-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Wiener-Hopf-Faktorisierung</subfield><subfield code="0">(DE-588)4128926-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Konstruktive Methode</subfield><subfield code="0">(DE-588)4165106-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Operator</subfield><subfield code="0">(DE-588)4130529-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Funktion</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4071510-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Faktor</subfield><subfield code="g">Algebra</subfield><subfield code="0">(DE-588)4234581-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kaashoek, Marinus A.</subfield><subfield code="d">1937-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)122738497</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-0348-7418-2</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857345</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042421928 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:10Z |
institution | BVB |
isbn | 9783034874182 9783034874205 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857345 |
oclc_num | 863976968 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XII, 410 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1986 |
publishDateSearch | 1986 |
publishDateSort | 1986 |
publisher | Birkhäuser Basel |
record_format | marc |
series2 | OT 21: Operator Theory: Advances and Applications |
spelling | Gohberg, Yiśrāʿēl Z. 1928-2009 Verfasser (DE-588)118915878 aut Constructive Methods of Wiener-Hopf Factorization edited by I. Gohberg, M. A. Kaashoek Basel Birkhäuser Basel 1986 1 Online-Ressource (XII, 410 p) txt rdacontent c rdamedia cr rdacarrier OT 21: Operator Theory: Advances and Applications 21 The main part of this paper concerns Toeplitz operators of which the symbol W is an m x m matrix function defined on a disconnected curve r. The curve r is assumed to be the union of s + 1 nonintersecting simple smooth closed contours rOo r ... rs which form the positively l oriented boundary of a finitely connected bounded domain in t. Our main requirement on the symbol W is that on each contour rj the function W is the restriction of a rational matrix function Wj which does not have poles and zeros on rj and at infinity. Using the realization theorem from system theory (see. e. g . [1]. Chapter 2) the rational matrix function Wj (which differs from contour to contour) may be written in the form 1 (0. 1) W . (A) = I + C. (A - A. f B. A E r· J J J J J where Aj is a square matrix of size nj x n. say. B and C are j j j matrices of sizes n. x m and m x n . respectively. and the matrices A. J x J J and Aj = Aj - BjC have no eigenvalues on r . (In (0. 1) the functions j j Wj are normalized to I at infinity Mathematics Mathematics, general Mathematik Operator (DE-588)4130529-2 gnd rswk-swf Konstruktive Methode (DE-588)4165106-6 gnd rswk-swf Funktion Mathematik (DE-588)4071510-3 gnd rswk-swf Wiener-Hopf-Faktorisierung (DE-588)4128926-2 gnd rswk-swf Faktor Algebra (DE-588)4234581-9 gnd rswk-swf Wiener-Hopf-Faktorisierung (DE-588)4128926-2 s Konstruktive Methode (DE-588)4165106-6 s 1\p DE-604 Operator (DE-588)4130529-2 s 2\p DE-604 Funktion Mathematik (DE-588)4071510-3 s 3\p DE-604 Faktor Algebra (DE-588)4234581-9 s 4\p DE-604 Kaashoek, Marinus A. 1937- Sonstige (DE-588)122738497 oth https://doi.org/10.1007/978-3-0348-7418-2 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Gohberg, Yiśrāʿēl Z. 1928-2009 Constructive Methods of Wiener-Hopf Factorization Mathematics Mathematics, general Mathematik Operator (DE-588)4130529-2 gnd Konstruktive Methode (DE-588)4165106-6 gnd Funktion Mathematik (DE-588)4071510-3 gnd Wiener-Hopf-Faktorisierung (DE-588)4128926-2 gnd Faktor Algebra (DE-588)4234581-9 gnd |
subject_GND | (DE-588)4130529-2 (DE-588)4165106-6 (DE-588)4071510-3 (DE-588)4128926-2 (DE-588)4234581-9 |
title | Constructive Methods of Wiener-Hopf Factorization |
title_auth | Constructive Methods of Wiener-Hopf Factorization |
title_exact_search | Constructive Methods of Wiener-Hopf Factorization |
title_full | Constructive Methods of Wiener-Hopf Factorization edited by I. Gohberg, M. A. Kaashoek |
title_fullStr | Constructive Methods of Wiener-Hopf Factorization edited by I. Gohberg, M. A. Kaashoek |
title_full_unstemmed | Constructive Methods of Wiener-Hopf Factorization edited by I. Gohberg, M. A. Kaashoek |
title_short | Constructive Methods of Wiener-Hopf Factorization |
title_sort | constructive methods of wiener hopf factorization |
topic | Mathematics Mathematics, general Mathematik Operator (DE-588)4130529-2 gnd Konstruktive Methode (DE-588)4165106-6 gnd Funktion Mathematik (DE-588)4071510-3 gnd Wiener-Hopf-Faktorisierung (DE-588)4128926-2 gnd Faktor Algebra (DE-588)4234581-9 gnd |
topic_facet | Mathematics Mathematics, general Mathematik Operator Konstruktive Methode Funktion Mathematik Wiener-Hopf-Faktorisierung Faktor Algebra |
url | https://doi.org/10.1007/978-3-0348-7418-2 |
work_keys_str_mv | AT gohbergyisraʿelz constructivemethodsofwienerhopffactorization AT kaashoekmarinusa constructivemethodsofwienerhopffactorization |