Constructive Methods of Wiener-Hopf Factorization:
Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Gohberg, Yiśrāʿēl Z. 1928-2009 (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Basel Birkhäuser Basel 1986
Schriftenreihe:OT 21: Operator Theory: Advances and Applications 21
Schlagworte:
Online-Zugang:Volltext
Beschreibung:The main part of this paper concerns Toeplitz operators of which the symbol W is an m x m matrix function defined on a disconnected curve r. The curve r is assumed to be the union of s + 1 nonintersecting simple smooth closed contours rOo r ... rs which form the positively l oriented boundary of a finitely connected bounded domain in t. Our main requirement on the symbol W is that on each contour rj the function W is the restriction of a rational matrix function Wj which does not have poles and zeros on rj and at infinity. Using the realization theorem from system theory (see. e. g . [1]. Chapter 2) the rational matrix function Wj (which differs from contour to contour) may be written in the form 1 (0. 1) W . (A) = I + C. (A - A. f B. A E r· J J J J J where Aj is a square matrix of size nj x n. say. B and C are j j j matrices of sizes n. x m and m x n . respectively. and the matrices A. J x J J and Aj = Aj - BjC have no eigenvalues on r . (In (0. 1) the functions j j Wj are normalized to I at infinity
Beschreibung:1 Online-Ressource (XII, 410 p)
ISBN:9783034874182
9783034874205
DOI:10.1007/978-3-0348-7418-2

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand! Volltext öffnen