Finite Difference Methods on Irregular Networks: A Generalized Approach to Second Order Elliptic Problems
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Basel
Birkhäuser Basel
1987
|
Schriftenreihe: | International Series of Numerical Mathematics Internationale Schriftenreihe zur Numerischen Mathematik / Série internationale d'Analyse numérique
82 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The finite difference and finite element methods are powerful tools for the approximate solution of differential equations governing diverse physical phenomena, and there is extensive literature on these discretization methods. In the last two decades, some extensions of the finite difference method to irregular networks have been described and applied to solving boundary value problems in science and engineering. For instance, "box integration methods" have been widely used in electronics. There are several papers on this topic, but a comprehensive study of these methods does not seem to have been attempted. The purpose of this book is to provide a systematic treatment of a generalized finite difference method on irregular networks for solving numerically elliptic boundary value problems. Thus, several disadvantages of the classical finite difference method can be removed, irregular networks of triangles known from the finite element method can be applied, and advantageous properties of the finite difference approximations will be obtained. The book is written for advanced undergraduates and graduates in the area of numerical analysis as well as for mathematically inclined workers in engineering and science. In preparing the material for this book, the author has greatly benefited from discussions and collaboration with many colleagues who are concerned with finite difference or (and) finite element methods |
Beschreibung: | 1 Online-Ressource (206 p) |
ISBN: | 9783034871969 9783034871983 |
DOI: | 10.1007/978-3-0348-7196-9 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042421912 | ||
003 | DE-604 | ||
005 | 20200505 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1987 |||| o||u| ||||||eng d | ||
020 | |a 9783034871969 |c Online |9 978-3-0348-7196-9 | ||
020 | |a 9783034871983 |c Print |9 978-3-0348-7198-3 | ||
024 | 7 | |a 10.1007/978-3-0348-7196-9 |2 doi | |
035 | |a (OCoLC)863928990 | ||
035 | |a (DE-599)BVBBV042421912 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 50 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Heinrich, Bernd |e Verfasser |4 aut | |
245 | 1 | 0 | |a Finite Difference Methods on Irregular Networks |b A Generalized Approach to Second Order Elliptic Problems |c by Bernd Heinrich |
264 | 1 | |a Basel |b Birkhäuser Basel |c 1987 | |
300 | |a 1 Online-Ressource (206 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série internationale d'Analyse numérique |v 82 | |
500 | |a The finite difference and finite element methods are powerful tools for the approximate solution of differential equations governing diverse physical phenomena, and there is extensive literature on these discretization methods. In the last two decades, some extensions of the finite difference method to irregular networks have been described and applied to solving boundary value problems in science and engineering. For instance, "box integration methods" have been widely used in electronics. There are several papers on this topic, but a comprehensive study of these methods does not seem to have been attempted. The purpose of this book is to provide a systematic treatment of a generalized finite difference method on irregular networks for solving numerically elliptic boundary value problems. Thus, several disadvantages of the classical finite difference method can be removed, irregular networks of triangles known from the finite element method can be applied, and advantageous properties of the finite difference approximations will be obtained. The book is written for advanced undergraduates and graduates in the area of numerical analysis as well as for mathematically inclined workers in engineering and science. In preparing the material for this book, the author has greatly benefited from discussions and collaboration with many colleagues who are concerned with finite difference or (and) finite element methods | ||
650 | 4 | |a Science (General) | |
650 | 4 | |a Science, general | |
650 | 4 | |a Naturwissenschaft | |
650 | 0 | 7 | |a Elliptisches Randwertproblem |0 (DE-588)4193399-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Randwertproblem |0 (DE-588)4048395-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Differenzenverfahren |0 (DE-588)4134362-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Finite-Differenzen-Methode |0 (DE-588)4194626-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Elliptische Differentialgleichung |0 (DE-588)4014485-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Finite-Differenzen-Methode |0 (DE-588)4194626-1 |D s |
689 | 0 | 1 | |a Randwertproblem |0 (DE-588)4048395-2 |D s |
689 | 0 | 2 | |a Elliptische Differentialgleichung |0 (DE-588)4014485-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Elliptisches Randwertproblem |0 (DE-588)4193399-0 |D s |
689 | 1 | 1 | |a Differenzenverfahren |0 (DE-588)4134362-1 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
830 | 0 | |a International Series of Numerical Mathematics |p Internationale Schriftenreihe zur Numerischen Mathematik / Série internationale d'Analyse numérique |v 82 |w (DE-604)BV022447306 |9 82 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-0348-7196-9 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857329 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153095542800384 |
---|---|
any_adam_object | |
author | Heinrich, Bernd |
author_facet | Heinrich, Bernd |
author_role | aut |
author_sort | Heinrich, Bernd |
author_variant | b h bh |
building | Verbundindex |
bvnumber | BV042421912 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863928990 (DE-599)BVBBV042421912 |
dewey-full | 50 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 050 - General serial publications |
dewey-raw | 50 |
dewey-search | 50 |
dewey-sort | 250 |
dewey-tens | 050 - General serial publications |
discipline | Allgemeine Naturwissenschaft Mathematik |
doi_str_mv | 10.1007/978-3-0348-7196-9 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03969nmm a2200577zcb4500</leader><controlfield tag="001">BV042421912</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200505 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1987 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034871969</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-0348-7196-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034871983</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-0348-7198-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-0348-7196-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863928990</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421912</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">50</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Heinrich, Bernd</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Finite Difference Methods on Irregular Networks</subfield><subfield code="b">A Generalized Approach to Second Order Elliptic Problems</subfield><subfield code="c">by Bernd Heinrich</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">Birkhäuser Basel</subfield><subfield code="c">1987</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (206 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série internationale d'Analyse numérique</subfield><subfield code="v">82</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The finite difference and finite element methods are powerful tools for the approximate solution of differential equations governing diverse physical phenomena, and there is extensive literature on these discretization methods. In the last two decades, some extensions of the finite difference method to irregular networks have been described and applied to solving boundary value problems in science and engineering. For instance, "box integration methods" have been widely used in electronics. There are several papers on this topic, but a comprehensive study of these methods does not seem to have been attempted. The purpose of this book is to provide a systematic treatment of a generalized finite difference method on irregular networks for solving numerically elliptic boundary value problems. Thus, several disadvantages of the classical finite difference method can be removed, irregular networks of triangles known from the finite element method can be applied, and advantageous properties of the finite difference approximations will be obtained. The book is written for advanced undergraduates and graduates in the area of numerical analysis as well as for mathematically inclined workers in engineering and science. In preparing the material for this book, the author has greatly benefited from discussions and collaboration with many colleagues who are concerned with finite difference or (and) finite element methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Science (General)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Science, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Naturwissenschaft</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elliptisches Randwertproblem</subfield><subfield code="0">(DE-588)4193399-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Randwertproblem</subfield><subfield code="0">(DE-588)4048395-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differenzenverfahren</subfield><subfield code="0">(DE-588)4134362-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Finite-Differenzen-Methode</subfield><subfield code="0">(DE-588)4194626-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elliptische Differentialgleichung</subfield><subfield code="0">(DE-588)4014485-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Finite-Differenzen-Methode</subfield><subfield code="0">(DE-588)4194626-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Randwertproblem</subfield><subfield code="0">(DE-588)4048395-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Elliptische Differentialgleichung</subfield><subfield code="0">(DE-588)4014485-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Elliptisches Randwertproblem</subfield><subfield code="0">(DE-588)4193399-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Differenzenverfahren</subfield><subfield code="0">(DE-588)4134362-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">International Series of Numerical Mathematics </subfield><subfield code="p">Internationale Schriftenreihe zur Numerischen Mathematik / Série internationale d'Analyse numérique</subfield><subfield code="v">82</subfield><subfield code="w">(DE-604)BV022447306</subfield><subfield code="9">82</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-0348-7196-9</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857329</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042421912 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:10Z |
institution | BVB |
isbn | 9783034871969 9783034871983 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857329 |
oclc_num | 863928990 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (206 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1987 |
publishDateSearch | 1987 |
publishDateSort | 1987 |
publisher | Birkhäuser Basel |
record_format | marc |
series | International Series of Numerical Mathematics Internationale Schriftenreihe zur Numerischen Mathematik / Série internationale d'Analyse numérique |
series2 | International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série internationale d'Analyse numérique |
spelling | Heinrich, Bernd Verfasser aut Finite Difference Methods on Irregular Networks A Generalized Approach to Second Order Elliptic Problems by Bernd Heinrich Basel Birkhäuser Basel 1987 1 Online-Ressource (206 p) txt rdacontent c rdamedia cr rdacarrier International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série internationale d'Analyse numérique 82 The finite difference and finite element methods are powerful tools for the approximate solution of differential equations governing diverse physical phenomena, and there is extensive literature on these discretization methods. In the last two decades, some extensions of the finite difference method to irregular networks have been described and applied to solving boundary value problems in science and engineering. For instance, "box integration methods" have been widely used in electronics. There are several papers on this topic, but a comprehensive study of these methods does not seem to have been attempted. The purpose of this book is to provide a systematic treatment of a generalized finite difference method on irregular networks for solving numerically elliptic boundary value problems. Thus, several disadvantages of the classical finite difference method can be removed, irregular networks of triangles known from the finite element method can be applied, and advantageous properties of the finite difference approximations will be obtained. The book is written for advanced undergraduates and graduates in the area of numerical analysis as well as for mathematically inclined workers in engineering and science. In preparing the material for this book, the author has greatly benefited from discussions and collaboration with many colleagues who are concerned with finite difference or (and) finite element methods Science (General) Science, general Naturwissenschaft Elliptisches Randwertproblem (DE-588)4193399-0 gnd rswk-swf Randwertproblem (DE-588)4048395-2 gnd rswk-swf Differenzenverfahren (DE-588)4134362-1 gnd rswk-swf Finite-Differenzen-Methode (DE-588)4194626-1 gnd rswk-swf Elliptische Differentialgleichung (DE-588)4014485-9 gnd rswk-swf Finite-Differenzen-Methode (DE-588)4194626-1 s Randwertproblem (DE-588)4048395-2 s Elliptische Differentialgleichung (DE-588)4014485-9 s 1\p DE-604 Elliptisches Randwertproblem (DE-588)4193399-0 s Differenzenverfahren (DE-588)4134362-1 s 2\p DE-604 International Series of Numerical Mathematics Internationale Schriftenreihe zur Numerischen Mathematik / Série internationale d'Analyse numérique 82 (DE-604)BV022447306 82 https://doi.org/10.1007/978-3-0348-7196-9 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Heinrich, Bernd Finite Difference Methods on Irregular Networks A Generalized Approach to Second Order Elliptic Problems International Series of Numerical Mathematics Internationale Schriftenreihe zur Numerischen Mathematik / Série internationale d'Analyse numérique Science (General) Science, general Naturwissenschaft Elliptisches Randwertproblem (DE-588)4193399-0 gnd Randwertproblem (DE-588)4048395-2 gnd Differenzenverfahren (DE-588)4134362-1 gnd Finite-Differenzen-Methode (DE-588)4194626-1 gnd Elliptische Differentialgleichung (DE-588)4014485-9 gnd |
subject_GND | (DE-588)4193399-0 (DE-588)4048395-2 (DE-588)4134362-1 (DE-588)4194626-1 (DE-588)4014485-9 |
title | Finite Difference Methods on Irregular Networks A Generalized Approach to Second Order Elliptic Problems |
title_auth | Finite Difference Methods on Irregular Networks A Generalized Approach to Second Order Elliptic Problems |
title_exact_search | Finite Difference Methods on Irregular Networks A Generalized Approach to Second Order Elliptic Problems |
title_full | Finite Difference Methods on Irregular Networks A Generalized Approach to Second Order Elliptic Problems by Bernd Heinrich |
title_fullStr | Finite Difference Methods on Irregular Networks A Generalized Approach to Second Order Elliptic Problems by Bernd Heinrich |
title_full_unstemmed | Finite Difference Methods on Irregular Networks A Generalized Approach to Second Order Elliptic Problems by Bernd Heinrich |
title_short | Finite Difference Methods on Irregular Networks |
title_sort | finite difference methods on irregular networks a generalized approach to second order elliptic problems |
title_sub | A Generalized Approach to Second Order Elliptic Problems |
topic | Science (General) Science, general Naturwissenschaft Elliptisches Randwertproblem (DE-588)4193399-0 gnd Randwertproblem (DE-588)4048395-2 gnd Differenzenverfahren (DE-588)4134362-1 gnd Finite-Differenzen-Methode (DE-588)4194626-1 gnd Elliptische Differentialgleichung (DE-588)4014485-9 gnd |
topic_facet | Science (General) Science, general Naturwissenschaft Elliptisches Randwertproblem Randwertproblem Differenzenverfahren Finite-Differenzen-Methode Elliptische Differentialgleichung |
url | https://doi.org/10.1007/978-3-0348-7196-9 |
volume_link | (DE-604)BV022447306 |
work_keys_str_mv | AT heinrichbernd finitedifferencemethodsonirregularnetworksageneralizedapproachtosecondorderellipticproblems |