Toeplitz Operators and Spectral Function Theory: Essays from the Leningrad Seminar on Operator Theory
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Basel
Birkhäuser Basel
1989
|
Schriftenreihe: | Operator Theory: Advances and Applications
42 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The volume contains selected papers of the Spectral Function Theory seminar, Leningrad Branch of Steklov Mathematical Institute. The papers are mostly devoted to the theory of Toeplitz and model operators. These subjects are considered here from various points of view. Several papers concern the relationships of Toeplitz operators to weighted polynomial approximation. Namely, two papers by B. Solomyak and A. Volberg intensively treat the problem of spectra! multiplicity f~r analytic Toeplitz operators (which are, in fact, multiplication operators) and my paper can serve as an introduction to the problem. This theme of multiplicities is continued in a paper by V. Vasyunin where the multiplicity of the spectrum is computed for Hilbert space contractions with finite defect indices. V. Peller's paper deals with a perturbation theory problem for Toeplitz operators. In a paper by D. Yakubovich a new similarity model for a class of Toeplitz operators is constructed. S. Treil' presents a survey of a part of spectral function theory for vector valued function (Szego-Kolmogorov extreme prob!ems for operator weights, bases of vector rational functions, estimations of Hilbert transform with respect to operator weights, the operator corona problem). As a concluding remark I dare only note that the whole collection convinces us once more without a doubt of the fruitfullness of the natural union of operator theory and complex analysis (if at all the union of these fields is at all different from their intersection) |
Beschreibung: | 1 Online-Ressource (VII, 421 p) |
ISBN: | 9783034855877 9783034855891 |
ISSN: | 0255-0156 |
DOI: | 10.1007/978-3-0348-5587-7 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042421874 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1989 |||| o||u| ||||||eng d | ||
020 | |a 9783034855877 |c Online |9 978-3-0348-5587-7 | ||
020 | |a 9783034855891 |c Print |9 978-3-0348-5589-1 | ||
024 | 7 | |a 10.1007/978-3-0348-5587-7 |2 doi | |
035 | |a (OCoLC)864738497 | ||
035 | |a (DE-599)BVBBV042421874 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 50 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Nikolskii, N. K. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Toeplitz Operators and Spectral Function Theory |b Essays from the Leningrad Seminar on Operator Theory |c edited by N. K. Nikolskii |
264 | 1 | |a Basel |b Birkhäuser Basel |c 1989 | |
300 | |a 1 Online-Ressource (VII, 421 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Operator Theory: Advances and Applications |v 42 |x 0255-0156 | |
500 | |a The volume contains selected papers of the Spectral Function Theory seminar, Leningrad Branch of Steklov Mathematical Institute. The papers are mostly devoted to the theory of Toeplitz and model operators. These subjects are considered here from various points of view. Several papers concern the relationships of Toeplitz operators to weighted polynomial approximation. Namely, two papers by B. Solomyak and A. Volberg intensively treat the problem of spectra! multiplicity f~r analytic Toeplitz operators (which are, in fact, multiplication operators) and my paper can serve as an introduction to the problem. This theme of multiplicities is continued in a paper by V. Vasyunin where the multiplicity of the spectrum is computed for Hilbert space contractions with finite defect indices. V. Peller's paper deals with a perturbation theory problem for Toeplitz operators. In a paper by D. Yakubovich a new similarity model for a class of Toeplitz operators is constructed. S. Treil' presents a survey of a part of spectral function theory for vector valued function (Szego-Kolmogorov extreme prob!ems for operator weights, bases of vector rational functions, estimations of Hilbert transform with respect to operator weights, the operator corona problem). As a concluding remark I dare only note that the whole collection convinces us once more without a doubt of the fruitfullness of the natural union of operator theory and complex analysis (if at all the union of these fields is at all different from their intersection) | ||
650 | 4 | |a Science (General) | |
650 | 4 | |a Science, general | |
650 | 4 | |a Naturwissenschaft | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-0348-5587-7 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857291 |
Datensatz im Suchindex
_version_ | 1804153095456817152 |
---|---|
any_adam_object | |
author | Nikolskii, N. K. |
author_facet | Nikolskii, N. K. |
author_role | aut |
author_sort | Nikolskii, N. K. |
author_variant | n k n nk nkn |
building | Verbundindex |
bvnumber | BV042421874 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)864738497 (DE-599)BVBBV042421874 |
dewey-full | 50 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 050 - General serial publications |
dewey-raw | 50 |
dewey-search | 50 |
dewey-sort | 250 |
dewey-tens | 050 - General serial publications |
discipline | Allgemeine Naturwissenschaft Mathematik |
doi_str_mv | 10.1007/978-3-0348-5587-7 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02860nmm a2200397zcb4500</leader><controlfield tag="001">BV042421874</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1989 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034855877</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-0348-5587-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034855891</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-0348-5589-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-0348-5587-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)864738497</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421874</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">50</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nikolskii, N. K.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Toeplitz Operators and Spectral Function Theory</subfield><subfield code="b">Essays from the Leningrad Seminar on Operator Theory</subfield><subfield code="c">edited by N. K. Nikolskii</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">Birkhäuser Basel</subfield><subfield code="c">1989</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VII, 421 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Operator Theory: Advances and Applications</subfield><subfield code="v">42</subfield><subfield code="x">0255-0156</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The volume contains selected papers of the Spectral Function Theory seminar, Leningrad Branch of Steklov Mathematical Institute. The papers are mostly devoted to the theory of Toeplitz and model operators. These subjects are considered here from various points of view. Several papers concern the relationships of Toeplitz operators to weighted polynomial approximation. Namely, two papers by B. Solomyak and A. Volberg intensively treat the problem of spectra! multiplicity f~r analytic Toeplitz operators (which are, in fact, multiplication operators) and my paper can serve as an introduction to the problem. This theme of multiplicities is continued in a paper by V. Vasyunin where the multiplicity of the spectrum is computed for Hilbert space contractions with finite defect indices. V. Peller's paper deals with a perturbation theory problem for Toeplitz operators. In a paper by D. Yakubovich a new similarity model for a class of Toeplitz operators is constructed. S. Treil' presents a survey of a part of spectral function theory for vector valued function (Szego-Kolmogorov extreme prob!ems for operator weights, bases of vector rational functions, estimations of Hilbert transform with respect to operator weights, the operator corona problem). As a concluding remark I dare only note that the whole collection convinces us once more without a doubt of the fruitfullness of the natural union of operator theory and complex analysis (if at all the union of these fields is at all different from their intersection)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Science (General)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Science, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Naturwissenschaft</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-0348-5587-7</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857291</subfield></datafield></record></collection> |
id | DE-604.BV042421874 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:09Z |
institution | BVB |
isbn | 9783034855877 9783034855891 |
issn | 0255-0156 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857291 |
oclc_num | 864738497 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (VII, 421 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1989 |
publishDateSearch | 1989 |
publishDateSort | 1989 |
publisher | Birkhäuser Basel |
record_format | marc |
series2 | Operator Theory: Advances and Applications |
spelling | Nikolskii, N. K. Verfasser aut Toeplitz Operators and Spectral Function Theory Essays from the Leningrad Seminar on Operator Theory edited by N. K. Nikolskii Basel Birkhäuser Basel 1989 1 Online-Ressource (VII, 421 p) txt rdacontent c rdamedia cr rdacarrier Operator Theory: Advances and Applications 42 0255-0156 The volume contains selected papers of the Spectral Function Theory seminar, Leningrad Branch of Steklov Mathematical Institute. The papers are mostly devoted to the theory of Toeplitz and model operators. These subjects are considered here from various points of view. Several papers concern the relationships of Toeplitz operators to weighted polynomial approximation. Namely, two papers by B. Solomyak and A. Volberg intensively treat the problem of spectra! multiplicity f~r analytic Toeplitz operators (which are, in fact, multiplication operators) and my paper can serve as an introduction to the problem. This theme of multiplicities is continued in a paper by V. Vasyunin where the multiplicity of the spectrum is computed for Hilbert space contractions with finite defect indices. V. Peller's paper deals with a perturbation theory problem for Toeplitz operators. In a paper by D. Yakubovich a new similarity model for a class of Toeplitz operators is constructed. S. Treil' presents a survey of a part of spectral function theory for vector valued function (Szego-Kolmogorov extreme prob!ems for operator weights, bases of vector rational functions, estimations of Hilbert transform with respect to operator weights, the operator corona problem). As a concluding remark I dare only note that the whole collection convinces us once more without a doubt of the fruitfullness of the natural union of operator theory and complex analysis (if at all the union of these fields is at all different from their intersection) Science (General) Science, general Naturwissenschaft https://doi.org/10.1007/978-3-0348-5587-7 Verlag Volltext |
spellingShingle | Nikolskii, N. K. Toeplitz Operators and Spectral Function Theory Essays from the Leningrad Seminar on Operator Theory Science (General) Science, general Naturwissenschaft |
title | Toeplitz Operators and Spectral Function Theory Essays from the Leningrad Seminar on Operator Theory |
title_auth | Toeplitz Operators and Spectral Function Theory Essays from the Leningrad Seminar on Operator Theory |
title_exact_search | Toeplitz Operators and Spectral Function Theory Essays from the Leningrad Seminar on Operator Theory |
title_full | Toeplitz Operators and Spectral Function Theory Essays from the Leningrad Seminar on Operator Theory edited by N. K. Nikolskii |
title_fullStr | Toeplitz Operators and Spectral Function Theory Essays from the Leningrad Seminar on Operator Theory edited by N. K. Nikolskii |
title_full_unstemmed | Toeplitz Operators and Spectral Function Theory Essays from the Leningrad Seminar on Operator Theory edited by N. K. Nikolskii |
title_short | Toeplitz Operators and Spectral Function Theory |
title_sort | toeplitz operators and spectral function theory essays from the leningrad seminar on operator theory |
title_sub | Essays from the Leningrad Seminar on Operator Theory |
topic | Science (General) Science, general Naturwissenschaft |
topic_facet | Science (General) Science, general Naturwissenschaft |
url | https://doi.org/10.1007/978-3-0348-5587-7 |
work_keys_str_mv | AT nikolskiink toeplitzoperatorsandspectralfunctiontheoryessaysfromtheleningradseminaronoperatortheory |