Numerical Analysis: Proceedings of the Colloquium on Numerical Analysis Lausanne, October 11–13, 1976
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Basel
Birkhäuser Basel
1977
|
Schriftenreihe: | International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série Internationale D’analyse Numérique
37 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Nowadays aluminium is essentially produced according to the Hall-H~roult process, in other words, by electrolysis of alumina A1 0 desolved in molten cryolite Na A1F at a 2 3 3 6 temperature of about 950 °C. In a reduction plant cells are connected in series. For technical and economical reasons, it is advisable to choose large nominal currents (150 kAle For such intensities, the electromagnetic effects in the cells become important. In particular, these effects bring about movements in the liauid metal, as well as interface variations in level, that are detrimental to efficiencv and energy consumption [l,~ • For an optimal design, it is necessary to predetermine the electromagnetic behaviour of each new typ of cells. It is specially necessary to calculate the repartition of the current density in each point of the cell (electric problem), and the magnetic induction produced in the liquid metal by the currents circulating in the cell itself, in the near cells and in the external conductors (magnetic problem). Electric problem formulation Stationary electric phenomena are described by the equations ~ . . . rotE=O (1) . . . divJ=O (2) t=f1 (3) The first equation can be replaced by t=-g;tdU (4) where U is the electric potential. J. -M. BLANC 131 ~ -+ We can eliminate E and J between the equations above. In an homogeneous material, we obtain a Laplace's equation (5) 4u=0 On surfaces separating material of different resistivities, . . . |
Beschreibung: | 1 Online-Ressource (248 p) |
ISBN: | 9783034855754 9783764309398 |
DOI: | 10.1007/978-3-0348-5575-4 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042421873 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1977 |||| o||u| ||||||eng d | ||
020 | |a 9783034855754 |c Online |9 978-3-0348-5575-4 | ||
020 | |a 9783764309398 |c Print |9 978-3-7643-0939-8 | ||
024 | 7 | |a 10.1007/978-3-0348-5575-4 |2 doi | |
035 | |a (OCoLC)859355782 | ||
035 | |a (DE-599)BVBBV042421873 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 50 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Descloux, Jean |e Verfasser |4 aut | |
245 | 1 | 0 | |a Numerical Analysis |b Proceedings of the Colloquium on Numerical Analysis Lausanne, October 11–13, 1976 |c edited by Jean Descloux, Jürg Marti |
264 | 1 | |a Basel |b Birkhäuser Basel |c 1977 | |
300 | |a 1 Online-Ressource (248 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série Internationale D’analyse Numérique |v 37 | |
500 | |a Nowadays aluminium is essentially produced according to the Hall-H~roult process, in other words, by electrolysis of alumina A1 0 desolved in molten cryolite Na A1F at a 2 3 3 6 temperature of about 950 °C. In a reduction plant cells are connected in series. For technical and economical reasons, it is advisable to choose large nominal currents (150 kAle For such intensities, the electromagnetic effects in the cells become important. In particular, these effects bring about movements in the liauid metal, as well as interface variations in level, that are detrimental to efficiencv and energy consumption [l,~ • For an optimal design, it is necessary to predetermine the electromagnetic behaviour of each new typ of cells. It is specially necessary to calculate the repartition of the current density in each point of the cell (electric problem), and the magnetic induction produced in the liquid metal by the currents circulating in the cell itself, in the near cells and in the external conductors (magnetic problem). Electric problem formulation Stationary electric phenomena are described by the equations ~ . . . rotE=O (1) . . . divJ=O (2) t=f1 (3) The first equation can be replaced by t=-g;tdU (4) where U is the electric potential. J. -M. BLANC 131 ~ -+ We can eliminate E and J between the equations above. In an homogeneous material, we obtain a Laplace's equation (5) 4u=0 On surfaces separating material of different resistivities, . . . | ||
650 | 4 | |a Science (General) | |
650 | 4 | |a Science, general | |
650 | 4 | |a Naturwissenschaft | |
650 | 0 | 7 | |a Numerische Mathematik |0 (DE-588)4042805-9 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)1071861417 |a Konferenzschrift |y 1976 |z Lausanne |2 gnd-content | |
689 | 0 | 0 | |a Numerische Mathematik |0 (DE-588)4042805-9 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
700 | 1 | |a Marti, Jürg |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-0348-5575-4 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857290 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153095450525696 |
---|---|
any_adam_object | |
author | Descloux, Jean |
author_facet | Descloux, Jean |
author_role | aut |
author_sort | Descloux, Jean |
author_variant | j d jd |
building | Verbundindex |
bvnumber | BV042421873 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)859355782 (DE-599)BVBBV042421873 |
dewey-full | 50 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 050 - General serial publications |
dewey-raw | 50 |
dewey-search | 50 |
dewey-sort | 250 |
dewey-tens | 050 - General serial publications |
discipline | Allgemeine Naturwissenschaft Mathematik |
doi_str_mv | 10.1007/978-3-0348-5575-4 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03359nmm a2200481zcb4500</leader><controlfield tag="001">BV042421873</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1977 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034855754</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-0348-5575-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783764309398</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-7643-0939-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-0348-5575-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)859355782</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421873</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">50</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Descloux, Jean</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Numerical Analysis</subfield><subfield code="b">Proceedings of the Colloquium on Numerical Analysis Lausanne, October 11–13, 1976</subfield><subfield code="c">edited by Jean Descloux, Jürg Marti</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">Birkhäuser Basel</subfield><subfield code="c">1977</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (248 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série Internationale D’analyse Numérique</subfield><subfield code="v">37</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Nowadays aluminium is essentially produced according to the Hall-H~roult process, in other words, by electrolysis of alumina A1 0 desolved in molten cryolite Na A1F at a 2 3 3 6 temperature of about 950 °C. In a reduction plant cells are connected in series. For technical and economical reasons, it is advisable to choose large nominal currents (150 kAle For such intensities, the electromagnetic effects in the cells become important. In particular, these effects bring about movements in the liauid metal, as well as interface variations in level, that are detrimental to efficiencv and energy consumption [l,~ • For an optimal design, it is necessary to predetermine the electromagnetic behaviour of each new typ of cells. It is specially necessary to calculate the repartition of the current density in each point of the cell (electric problem), and the magnetic induction produced in the liquid metal by the currents circulating in the cell itself, in the near cells and in the external conductors (magnetic problem). Electric problem formulation Stationary electric phenomena are described by the equations ~ . . . rotE=O (1) . . . divJ=O (2) t=f1 (3) The first equation can be replaced by t=-g;tdU (4) where U is the electric potential. J. -M. BLANC 131 ~ -+ We can eliminate E and J between the equations above. In an homogeneous material, we obtain a Laplace's equation (5) 4u=0 On surfaces separating material of different resistivities, . . .</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Science (General)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Science, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Naturwissenschaft</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerische Mathematik</subfield><subfield code="0">(DE-588)4042805-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="y">1976</subfield><subfield code="z">Lausanne</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Numerische Mathematik</subfield><subfield code="0">(DE-588)4042805-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Marti, Jürg</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-0348-5575-4</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857290</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)1071861417 Konferenzschrift 1976 Lausanne gnd-content |
genre_facet | Konferenzschrift 1976 Lausanne |
id | DE-604.BV042421873 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:09Z |
institution | BVB |
isbn | 9783034855754 9783764309398 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857290 |
oclc_num | 859355782 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (248 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1977 |
publishDateSearch | 1977 |
publishDateSort | 1977 |
publisher | Birkhäuser Basel |
record_format | marc |
series2 | International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série Internationale D’analyse Numérique |
spelling | Descloux, Jean Verfasser aut Numerical Analysis Proceedings of the Colloquium on Numerical Analysis Lausanne, October 11–13, 1976 edited by Jean Descloux, Jürg Marti Basel Birkhäuser Basel 1977 1 Online-Ressource (248 p) txt rdacontent c rdamedia cr rdacarrier International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série Internationale D’analyse Numérique 37 Nowadays aluminium is essentially produced according to the Hall-H~roult process, in other words, by electrolysis of alumina A1 0 desolved in molten cryolite Na A1F at a 2 3 3 6 temperature of about 950 °C. In a reduction plant cells are connected in series. For technical and economical reasons, it is advisable to choose large nominal currents (150 kAle For such intensities, the electromagnetic effects in the cells become important. In particular, these effects bring about movements in the liauid metal, as well as interface variations in level, that are detrimental to efficiencv and energy consumption [l,~ • For an optimal design, it is necessary to predetermine the electromagnetic behaviour of each new typ of cells. It is specially necessary to calculate the repartition of the current density in each point of the cell (electric problem), and the magnetic induction produced in the liquid metal by the currents circulating in the cell itself, in the near cells and in the external conductors (magnetic problem). Electric problem formulation Stationary electric phenomena are described by the equations ~ . . . rotE=O (1) . . . divJ=O (2) t=f1 (3) The first equation can be replaced by t=-g;tdU (4) where U is the electric potential. J. -M. BLANC 131 ~ -+ We can eliminate E and J between the equations above. In an homogeneous material, we obtain a Laplace's equation (5) 4u=0 On surfaces separating material of different resistivities, . . . Science (General) Science, general Naturwissenschaft Numerische Mathematik (DE-588)4042805-9 gnd rswk-swf 1\p (DE-588)1071861417 Konferenzschrift 1976 Lausanne gnd-content Numerische Mathematik (DE-588)4042805-9 s 2\p DE-604 Marti, Jürg Sonstige oth https://doi.org/10.1007/978-3-0348-5575-4 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Descloux, Jean Numerical Analysis Proceedings of the Colloquium on Numerical Analysis Lausanne, October 11–13, 1976 Science (General) Science, general Naturwissenschaft Numerische Mathematik (DE-588)4042805-9 gnd |
subject_GND | (DE-588)4042805-9 (DE-588)1071861417 |
title | Numerical Analysis Proceedings of the Colloquium on Numerical Analysis Lausanne, October 11–13, 1976 |
title_auth | Numerical Analysis Proceedings of the Colloquium on Numerical Analysis Lausanne, October 11–13, 1976 |
title_exact_search | Numerical Analysis Proceedings of the Colloquium on Numerical Analysis Lausanne, October 11–13, 1976 |
title_full | Numerical Analysis Proceedings of the Colloquium on Numerical Analysis Lausanne, October 11–13, 1976 edited by Jean Descloux, Jürg Marti |
title_fullStr | Numerical Analysis Proceedings of the Colloquium on Numerical Analysis Lausanne, October 11–13, 1976 edited by Jean Descloux, Jürg Marti |
title_full_unstemmed | Numerical Analysis Proceedings of the Colloquium on Numerical Analysis Lausanne, October 11–13, 1976 edited by Jean Descloux, Jürg Marti |
title_short | Numerical Analysis |
title_sort | numerical analysis proceedings of the colloquium on numerical analysis lausanne october 11 13 1976 |
title_sub | Proceedings of the Colloquium on Numerical Analysis Lausanne, October 11–13, 1976 |
topic | Science (General) Science, general Naturwissenschaft Numerische Mathematik (DE-588)4042805-9 gnd |
topic_facet | Science (General) Science, general Naturwissenschaft Numerische Mathematik Konferenzschrift 1976 Lausanne |
url | https://doi.org/10.1007/978-3-0348-5575-4 |
work_keys_str_mv | AT desclouxjean numericalanalysisproceedingsofthecolloquiumonnumericalanalysislausanneoctober11131976 AT martijurg numericalanalysisproceedingsofthecolloquiumonnumericalanalysislausanneoctober11131976 |