Orthogonal Matrix-valued Polynomials and Applications: Seminar on Operator Theory at the School of Mathematical Sciences, Tel Aviv University
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Basel
Birkhäuser Basel
1988
|
Schriftenreihe: | Operator Theory: Advances and Applications
34 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This paper is a largely expository account of the theory of p x p matrix polyno mials associated with Hermitian block Toeplitz matrices and some related problems of interpolation and extension. Perhaps the main novelty is the use of reproducing kernel Pontryagin spaces to develop parts of the theory in what hopefully the reader will regard as a reasonably lucid way. The topics under discussion are presented in a series of short sections, the headings of which give a pretty good idea of the overall contents of the paper. The theory is a rich one and the present paper in spite of its length is far from complete. The author hopes to fill in some of the gaps in future publications. The story begins with a given sequence h_n" ... , hn of p x p matrices with h-i = hj for j = 0, ... , n. We let k = O, ... ,n, (1.1) denote the Hermitian block Toeplitz matrix based on ho, ... , hk and shall denote its 1 inverse H k by (k)] k [ r = .. k = O, ... ,n, (1.2) k II} . '-0 ' I- whenever Hk is invertible |
Beschreibung: | 1 Online-Ressource (IX, 214 p) |
ISBN: | 9783034854726 9783034854740 |
ISSN: | 0255-0156 |
DOI: | 10.1007/978-3-0348-5472-6 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042421867 | ||
003 | DE-604 | ||
005 | 20190315 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1988 |||| o||u| ||||||eng d | ||
020 | |a 9783034854726 |c Online |9 978-3-0348-5472-6 | ||
020 | |a 9783034854740 |c Print |9 978-3-0348-5474-0 | ||
024 | 7 | |a 10.1007/978-3-0348-5472-6 |2 doi | |
035 | |a (OCoLC)1184490165 | ||
035 | |a (DE-599)BVBBV042421867 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 50 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Gohberg, Yiśrāʿēl Z. |d 1928-2009 |e Verfasser |0 (DE-588)118915878 |4 aut | |
245 | 1 | 0 | |a Orthogonal Matrix-valued Polynomials and Applications |b Seminar on Operator Theory at the School of Mathematical Sciences, Tel Aviv University |c edited by I. Gohberg |
264 | 1 | |a Basel |b Birkhäuser Basel |c 1988 | |
300 | |a 1 Online-Ressource (IX, 214 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Operator Theory: Advances and Applications |v 34 |x 0255-0156 | |
500 | |a This paper is a largely expository account of the theory of p x p matrix polyno mials associated with Hermitian block Toeplitz matrices and some related problems of interpolation and extension. Perhaps the main novelty is the use of reproducing kernel Pontryagin spaces to develop parts of the theory in what hopefully the reader will regard as a reasonably lucid way. The topics under discussion are presented in a series of short sections, the headings of which give a pretty good idea of the overall contents of the paper. The theory is a rich one and the present paper in spite of its length is far from complete. The author hopes to fill in some of the gaps in future publications. The story begins with a given sequence h_n" ... , hn of p x p matrices with h-i = hj for j = 0, ... , n. We let k = O, ... ,n, (1.1) denote the Hermitian block Toeplitz matrix based on ho, ... , hk and shall denote its 1 inverse H k by (k)] k [ r = .. k = O, ... ,n, (1.2) k II} . '-0 ' I- whenever Hk is invertible | ||
600 | 1 | 7 | |a Krejn, Mark G. |d 1907-1989 |0 (DE-588)118841319 |2 gnd |9 rswk-swf |
650 | 4 | |a Science (General) | |
650 | 4 | |a Science, general | |
650 | 4 | |a Naturwissenschaft | |
650 | 0 | 7 | |a Matrixwertige Funktion |0 (DE-588)4128928-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Orthogonale Polynome |0 (DE-588)4172863-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Bibliografie |0 (DE-588)4006432-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Orthogonale Matrizenpolynome |0 (DE-588)4202346-4 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)1071861417 |a Konferenzschrift |y 1988 |z Tel Aviv |2 gnd-content | |
655 | 7 | |8 2\p |0 (DE-588)1071861417 |a Konferenzschrift |y 1987 |z Tel Aviv- Jaffa |2 gnd-content | |
655 | 7 | |8 3\p |0 (DE-588)4016928-5 |a Festschrift |2 gnd-content | |
689 | 0 | 0 | |a Matrixwertige Funktion |0 (DE-588)4128928-6 |D s |
689 | 0 | 1 | |a Orthogonale Polynome |0 (DE-588)4172863-4 |D s |
689 | 0 | |8 4\p |5 DE-604 | |
689 | 1 | 0 | |a Krejn, Mark G. |d 1907-1989 |0 (DE-588)118841319 |D p |
689 | 1 | 1 | |a Bibliografie |0 (DE-588)4006432-3 |D s |
689 | 1 | |8 5\p |5 DE-604 | |
689 | 2 | 0 | |a Orthogonale Matrizenpolynome |0 (DE-588)4202346-4 |D s |
689 | 2 | |8 6\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-0348-5472-6 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857284 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 5\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 6\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153095430602752 |
---|---|
any_adam_object | |
author | Gohberg, Yiśrāʿēl Z. 1928-2009 |
author_GND | (DE-588)118915878 |
author_facet | Gohberg, Yiśrāʿēl Z. 1928-2009 |
author_role | aut |
author_sort | Gohberg, Yiśrāʿēl Z. 1928-2009 |
author_variant | y z g yz yzg |
building | Verbundindex |
bvnumber | BV042421867 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184490165 (DE-599)BVBBV042421867 |
dewey-full | 50 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 050 - General serial publications |
dewey-raw | 50 |
dewey-search | 50 |
dewey-sort | 250 |
dewey-tens | 050 - General serial publications |
discipline | Allgemeine Naturwissenschaft Mathematik |
doi_str_mv | 10.1007/978-3-0348-5472-6 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03922nmm a2200661zcb4500</leader><controlfield tag="001">BV042421867</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190315 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1988 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034854726</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-0348-5472-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034854740</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-0348-5474-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-0348-5472-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184490165</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421867</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">50</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gohberg, Yiśrāʿēl Z.</subfield><subfield code="d">1928-2009</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)118915878</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Orthogonal Matrix-valued Polynomials and Applications</subfield><subfield code="b">Seminar on Operator Theory at the School of Mathematical Sciences, Tel Aviv University</subfield><subfield code="c">edited by I. Gohberg</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">Birkhäuser Basel</subfield><subfield code="c">1988</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (IX, 214 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Operator Theory: Advances and Applications</subfield><subfield code="v">34</subfield><subfield code="x">0255-0156</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This paper is a largely expository account of the theory of p x p matrix polyno mials associated with Hermitian block Toeplitz matrices and some related problems of interpolation and extension. Perhaps the main novelty is the use of reproducing kernel Pontryagin spaces to develop parts of the theory in what hopefully the reader will regard as a reasonably lucid way. The topics under discussion are presented in a series of short sections, the headings of which give a pretty good idea of the overall contents of the paper. The theory is a rich one and the present paper in spite of its length is far from complete. The author hopes to fill in some of the gaps in future publications. The story begins with a given sequence h_n" ... , hn of p x p matrices with h-i = hj for j = 0, ... , n. We let k = O, ... ,n, (1.1) denote the Hermitian block Toeplitz matrix based on ho, ... , hk and shall denote its 1 inverse H k by (k)] k [ r = .. k = O, ... ,n, (1.2) k II} . '-0 ' I- whenever Hk is invertible</subfield></datafield><datafield tag="600" ind1="1" ind2="7"><subfield code="a">Krejn, Mark G.</subfield><subfield code="d">1907-1989</subfield><subfield code="0">(DE-588)118841319</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Science (General)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Science, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Naturwissenschaft</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Matrixwertige Funktion</subfield><subfield code="0">(DE-588)4128928-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Orthogonale Polynome</subfield><subfield code="0">(DE-588)4172863-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bibliografie</subfield><subfield code="0">(DE-588)4006432-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Orthogonale Matrizenpolynome</subfield><subfield code="0">(DE-588)4202346-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="y">1988</subfield><subfield code="z">Tel Aviv</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">2\p</subfield><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="y">1987</subfield><subfield code="z">Tel Aviv- Jaffa</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">3\p</subfield><subfield code="0">(DE-588)4016928-5</subfield><subfield code="a">Festschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Matrixwertige Funktion</subfield><subfield code="0">(DE-588)4128928-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Orthogonale Polynome</subfield><subfield code="0">(DE-588)4172863-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Krejn, Mark G.</subfield><subfield code="d">1907-1989</subfield><subfield code="0">(DE-588)118841319</subfield><subfield code="D">p</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Bibliografie</subfield><subfield code="0">(DE-588)4006432-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">5\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Orthogonale Matrizenpolynome</subfield><subfield code="0">(DE-588)4202346-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">6\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-0348-5472-6</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857284</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">5\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">6\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)1071861417 Konferenzschrift 1988 Tel Aviv gnd-content 2\p (DE-588)1071861417 Konferenzschrift 1987 Tel Aviv- Jaffa gnd-content 3\p (DE-588)4016928-5 Festschrift gnd-content |
genre_facet | Konferenzschrift 1988 Tel Aviv Konferenzschrift 1987 Tel Aviv- Jaffa Festschrift |
id | DE-604.BV042421867 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:09Z |
institution | BVB |
isbn | 9783034854726 9783034854740 |
issn | 0255-0156 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857284 |
oclc_num | 1184490165 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (IX, 214 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1988 |
publishDateSearch | 1988 |
publishDateSort | 1988 |
publisher | Birkhäuser Basel |
record_format | marc |
series2 | Operator Theory: Advances and Applications |
spelling | Gohberg, Yiśrāʿēl Z. 1928-2009 Verfasser (DE-588)118915878 aut Orthogonal Matrix-valued Polynomials and Applications Seminar on Operator Theory at the School of Mathematical Sciences, Tel Aviv University edited by I. Gohberg Basel Birkhäuser Basel 1988 1 Online-Ressource (IX, 214 p) txt rdacontent c rdamedia cr rdacarrier Operator Theory: Advances and Applications 34 0255-0156 This paper is a largely expository account of the theory of p x p matrix polyno mials associated with Hermitian block Toeplitz matrices and some related problems of interpolation and extension. Perhaps the main novelty is the use of reproducing kernel Pontryagin spaces to develop parts of the theory in what hopefully the reader will regard as a reasonably lucid way. The topics under discussion are presented in a series of short sections, the headings of which give a pretty good idea of the overall contents of the paper. The theory is a rich one and the present paper in spite of its length is far from complete. The author hopes to fill in some of the gaps in future publications. The story begins with a given sequence h_n" ... , hn of p x p matrices with h-i = hj for j = 0, ... , n. We let k = O, ... ,n, (1.1) denote the Hermitian block Toeplitz matrix based on ho, ... , hk and shall denote its 1 inverse H k by (k)] k [ r = .. k = O, ... ,n, (1.2) k II} . '-0 ' I- whenever Hk is invertible Krejn, Mark G. 1907-1989 (DE-588)118841319 gnd rswk-swf Science (General) Science, general Naturwissenschaft Matrixwertige Funktion (DE-588)4128928-6 gnd rswk-swf Orthogonale Polynome (DE-588)4172863-4 gnd rswk-swf Bibliografie (DE-588)4006432-3 gnd rswk-swf Orthogonale Matrizenpolynome (DE-588)4202346-4 gnd rswk-swf 1\p (DE-588)1071861417 Konferenzschrift 1988 Tel Aviv gnd-content 2\p (DE-588)1071861417 Konferenzschrift 1987 Tel Aviv- Jaffa gnd-content 3\p (DE-588)4016928-5 Festschrift gnd-content Matrixwertige Funktion (DE-588)4128928-6 s Orthogonale Polynome (DE-588)4172863-4 s 4\p DE-604 Krejn, Mark G. 1907-1989 (DE-588)118841319 p Bibliografie (DE-588)4006432-3 s 5\p DE-604 Orthogonale Matrizenpolynome (DE-588)4202346-4 s 6\p DE-604 https://doi.org/10.1007/978-3-0348-5472-6 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 5\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 6\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Gohberg, Yiśrāʿēl Z. 1928-2009 Orthogonal Matrix-valued Polynomials and Applications Seminar on Operator Theory at the School of Mathematical Sciences, Tel Aviv University Krejn, Mark G. 1907-1989 (DE-588)118841319 gnd Science (General) Science, general Naturwissenschaft Matrixwertige Funktion (DE-588)4128928-6 gnd Orthogonale Polynome (DE-588)4172863-4 gnd Bibliografie (DE-588)4006432-3 gnd Orthogonale Matrizenpolynome (DE-588)4202346-4 gnd |
subject_GND | (DE-588)118841319 (DE-588)4128928-6 (DE-588)4172863-4 (DE-588)4006432-3 (DE-588)4202346-4 (DE-588)1071861417 (DE-588)4016928-5 |
title | Orthogonal Matrix-valued Polynomials and Applications Seminar on Operator Theory at the School of Mathematical Sciences, Tel Aviv University |
title_auth | Orthogonal Matrix-valued Polynomials and Applications Seminar on Operator Theory at the School of Mathematical Sciences, Tel Aviv University |
title_exact_search | Orthogonal Matrix-valued Polynomials and Applications Seminar on Operator Theory at the School of Mathematical Sciences, Tel Aviv University |
title_full | Orthogonal Matrix-valued Polynomials and Applications Seminar on Operator Theory at the School of Mathematical Sciences, Tel Aviv University edited by I. Gohberg |
title_fullStr | Orthogonal Matrix-valued Polynomials and Applications Seminar on Operator Theory at the School of Mathematical Sciences, Tel Aviv University edited by I. Gohberg |
title_full_unstemmed | Orthogonal Matrix-valued Polynomials and Applications Seminar on Operator Theory at the School of Mathematical Sciences, Tel Aviv University edited by I. Gohberg |
title_short | Orthogonal Matrix-valued Polynomials and Applications |
title_sort | orthogonal matrix valued polynomials and applications seminar on operator theory at the school of mathematical sciences tel aviv university |
title_sub | Seminar on Operator Theory at the School of Mathematical Sciences, Tel Aviv University |
topic | Krejn, Mark G. 1907-1989 (DE-588)118841319 gnd Science (General) Science, general Naturwissenschaft Matrixwertige Funktion (DE-588)4128928-6 gnd Orthogonale Polynome (DE-588)4172863-4 gnd Bibliografie (DE-588)4006432-3 gnd Orthogonale Matrizenpolynome (DE-588)4202346-4 gnd |
topic_facet | Krejn, Mark G. 1907-1989 Science (General) Science, general Naturwissenschaft Matrixwertige Funktion Orthogonale Polynome Bibliografie Orthogonale Matrizenpolynome Konferenzschrift 1988 Tel Aviv Konferenzschrift 1987 Tel Aviv- Jaffa Festschrift |
url | https://doi.org/10.1007/978-3-0348-5472-6 |
work_keys_str_mv | AT gohbergyisraʿelz orthogonalmatrixvaluedpolynomialsandapplicationsseminaronoperatortheoryattheschoolofmathematicalsciencestelavivuniversity |