Banach Algebras with Symbol and Singular Integral Operators:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Basel
Birkhäuser Basel
1987
|
Schriftenreihe: | Operator Theory: Advances and Applications
26 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | About fifty years aga S. G. Mikhlin, in solving the regularization problem for two-dimensional singular integral operators [56], assigned to each such operator a function which he called a symbol, and showed that regularization is possible if the infimum of the modulus of the symbol is positive. Later, the notion of a symbol was extended to multidimensional singular integral operators (of arbitrary dimension) [57, 58, 21, 22]. Subsequently, the synthesis of singular integral, and differential operators [2, 8, 9]led to the theory of pseudodifferential operators [17, 35] (see also [35(1)-35(17)]*), which are naturally characterized by their symbols. An important role in the construction of symbols for many classes of operators was played by Gelfand's theory of maximal ideals of Banach algebras [201. Using this theory, criteria were obtained for Fredholmness of one-dimensional singular integral operators with continuous coefficients [34 (42)], Wiener-Hopf operators [37], and multidimensional singular integral operators [38 (2)]. The investigation of systems of equations involving such operators has led to the notion of matrix symbol [59, 12 (14), 39, 41]. This notion plays an essential role not only for systems, but also for singular integral operators with piecewise-continuous (scalar) coefficients [44 (4)]. At the same time, attempts to introduce a (scalar or matrix) symbol for other algebras have failed |
Beschreibung: | 1 Online-Ressource (X, 206 p) |
ISBN: | 9783034854634 9783034854658 |
DOI: | 10.1007/978-3-0348-5463-4 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042421865 | ||
003 | DE-604 | ||
005 | 20211215 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1987 |||| o||u| ||||||eng d | ||
020 | |a 9783034854634 |c Online |9 978-3-0348-5463-4 | ||
020 | |a 9783034854658 |c Print |9 978-3-0348-5465-8 | ||
024 | 7 | |a 10.1007/978-3-0348-5463-4 |2 doi | |
035 | |a (OCoLC)859369817 | ||
035 | |a (DE-599)BVBBV042421865 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 50 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Krupnik, Nahum |d 1932- |e Verfasser |0 (DE-588)121758400 |4 aut | |
245 | 1 | 0 | |a Banach Algebras with Symbol and Singular Integral Operators |c by Naum Yakovlevich Krupnik |
264 | 1 | |a Basel |b Birkhäuser Basel |c 1987 | |
300 | |a 1 Online-Ressource (X, 206 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Operator Theory: Advances and Applications |v 26 | |
500 | |a About fifty years aga S. G. Mikhlin, in solving the regularization problem for two-dimensional singular integral operators [56], assigned to each such operator a function which he called a symbol, and showed that regularization is possible if the infimum of the modulus of the symbol is positive. Later, the notion of a symbol was extended to multidimensional singular integral operators (of arbitrary dimension) [57, 58, 21, 22]. Subsequently, the synthesis of singular integral, and differential operators [2, 8, 9]led to the theory of pseudodifferential operators [17, 35] (see also [35(1)-35(17)]*), which are naturally characterized by their symbols. An important role in the construction of symbols for many classes of operators was played by Gelfand's theory of maximal ideals of Banach algebras [201. Using this theory, criteria were obtained for Fredholmness of one-dimensional singular integral operators with continuous coefficients [34 (42)], Wiener-Hopf operators [37], and multidimensional singular integral operators [38 (2)]. The investigation of systems of equations involving such operators has led to the notion of matrix symbol [59, 12 (14), 39, 41]. This notion plays an essential role not only for systems, but also for singular integral operators with piecewise-continuous (scalar) coefficients [44 (4)]. At the same time, attempts to introduce a (scalar or matrix) symbol for other algebras have failed | ||
650 | 4 | |a Science (General) | |
650 | 4 | |a Science, general | |
650 | 4 | |a Naturwissenschaft | |
650 | 0 | 7 | |a Singulärer Integraloperator |0 (DE-588)4131249-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Integraloperator |0 (DE-588)4131247-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Fredholm-Theorie |0 (DE-588)4155263-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Banach-Algebra |0 (DE-588)4193187-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Banach-Algebra |0 (DE-588)4193187-7 |D s |
689 | 0 | 1 | |a Singulärer Integraloperator |0 (DE-588)4131249-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Fredholm-Theorie |0 (DE-588)4155263-5 |D s |
689 | 1 | 1 | |a Singulärer Integraloperator |0 (DE-588)4131249-1 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Banach-Algebra |0 (DE-588)4193187-7 |D s |
689 | 2 | 1 | |a Integraloperator |0 (DE-588)4131247-8 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
810 | 2 | |a Operator Theory |t Advances and Applications |v 26 |w (DE-604)BV035421307 |9 26 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-0348-5463-4 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857282 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153095426408448 |
---|---|
any_adam_object | |
author | Krupnik, Nahum 1932- |
author_GND | (DE-588)121758400 |
author_facet | Krupnik, Nahum 1932- |
author_role | aut |
author_sort | Krupnik, Nahum 1932- |
author_variant | n k nk |
building | Verbundindex |
bvnumber | BV042421865 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)859369817 (DE-599)BVBBV042421865 |
dewey-full | 50 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 050 - General serial publications |
dewey-raw | 50 |
dewey-search | 50 |
dewey-sort | 250 |
dewey-tens | 050 - General serial publications |
discipline | Allgemeine Naturwissenschaft Mathematik |
doi_str_mv | 10.1007/978-3-0348-5463-4 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03790nmm a2200601zcb4500</leader><controlfield tag="001">BV042421865</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20211215 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1987 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034854634</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-0348-5463-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034854658</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-0348-5465-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-0348-5463-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)859369817</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421865</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">50</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Krupnik, Nahum</subfield><subfield code="d">1932-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)121758400</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Banach Algebras with Symbol and Singular Integral Operators</subfield><subfield code="c">by Naum Yakovlevich Krupnik</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">Birkhäuser Basel</subfield><subfield code="c">1987</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 206 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Operator Theory: Advances and Applications</subfield><subfield code="v">26</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">About fifty years aga S. G. Mikhlin, in solving the regularization problem for two-dimensional singular integral operators [56], assigned to each such operator a function which he called a symbol, and showed that regularization is possible if the infimum of the modulus of the symbol is positive. Later, the notion of a symbol was extended to multidimensional singular integral operators (of arbitrary dimension) [57, 58, 21, 22]. Subsequently, the synthesis of singular integral, and differential operators [2, 8, 9]led to the theory of pseudodifferential operators [17, 35] (see also [35(1)-35(17)]*), which are naturally characterized by their symbols. An important role in the construction of symbols for many classes of operators was played by Gelfand's theory of maximal ideals of Banach algebras [201. Using this theory, criteria were obtained for Fredholmness of one-dimensional singular integral operators with continuous coefficients [34 (42)], Wiener-Hopf operators [37], and multidimensional singular integral operators [38 (2)]. The investigation of systems of equations involving such operators has led to the notion of matrix symbol [59, 12 (14), 39, 41]. This notion plays an essential role not only for systems, but also for singular integral operators with piecewise-continuous (scalar) coefficients [44 (4)]. At the same time, attempts to introduce a (scalar or matrix) symbol for other algebras have failed</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Science (General)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Science, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Naturwissenschaft</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Singulärer Integraloperator</subfield><subfield code="0">(DE-588)4131249-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Integraloperator</subfield><subfield code="0">(DE-588)4131247-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fredholm-Theorie</subfield><subfield code="0">(DE-588)4155263-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Banach-Algebra</subfield><subfield code="0">(DE-588)4193187-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Banach-Algebra</subfield><subfield code="0">(DE-588)4193187-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Singulärer Integraloperator</subfield><subfield code="0">(DE-588)4131249-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Fredholm-Theorie</subfield><subfield code="0">(DE-588)4155263-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Singulärer Integraloperator</subfield><subfield code="0">(DE-588)4131249-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Banach-Algebra</subfield><subfield code="0">(DE-588)4193187-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Integraloperator</subfield><subfield code="0">(DE-588)4131247-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Operator Theory</subfield><subfield code="t">Advances and Applications</subfield><subfield code="v">26</subfield><subfield code="w">(DE-604)BV035421307</subfield><subfield code="9">26</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-0348-5463-4</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857282</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042421865 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:09Z |
institution | BVB |
isbn | 9783034854634 9783034854658 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857282 |
oclc_num | 859369817 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (X, 206 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1987 |
publishDateSearch | 1987 |
publishDateSort | 1987 |
publisher | Birkhäuser Basel |
record_format | marc |
series2 | Operator Theory: Advances and Applications |
spelling | Krupnik, Nahum 1932- Verfasser (DE-588)121758400 aut Banach Algebras with Symbol and Singular Integral Operators by Naum Yakovlevich Krupnik Basel Birkhäuser Basel 1987 1 Online-Ressource (X, 206 p) txt rdacontent c rdamedia cr rdacarrier Operator Theory: Advances and Applications 26 About fifty years aga S. G. Mikhlin, in solving the regularization problem for two-dimensional singular integral operators [56], assigned to each such operator a function which he called a symbol, and showed that regularization is possible if the infimum of the modulus of the symbol is positive. Later, the notion of a symbol was extended to multidimensional singular integral operators (of arbitrary dimension) [57, 58, 21, 22]. Subsequently, the synthesis of singular integral, and differential operators [2, 8, 9]led to the theory of pseudodifferential operators [17, 35] (see also [35(1)-35(17)]*), which are naturally characterized by their symbols. An important role in the construction of symbols for many classes of operators was played by Gelfand's theory of maximal ideals of Banach algebras [201. Using this theory, criteria were obtained for Fredholmness of one-dimensional singular integral operators with continuous coefficients [34 (42)], Wiener-Hopf operators [37], and multidimensional singular integral operators [38 (2)]. The investigation of systems of equations involving such operators has led to the notion of matrix symbol [59, 12 (14), 39, 41]. This notion plays an essential role not only for systems, but also for singular integral operators with piecewise-continuous (scalar) coefficients [44 (4)]. At the same time, attempts to introduce a (scalar or matrix) symbol for other algebras have failed Science (General) Science, general Naturwissenschaft Singulärer Integraloperator (DE-588)4131249-1 gnd rswk-swf Integraloperator (DE-588)4131247-8 gnd rswk-swf Fredholm-Theorie (DE-588)4155263-5 gnd rswk-swf Banach-Algebra (DE-588)4193187-7 gnd rswk-swf Banach-Algebra (DE-588)4193187-7 s Singulärer Integraloperator (DE-588)4131249-1 s 1\p DE-604 Fredholm-Theorie (DE-588)4155263-5 s 2\p DE-604 Integraloperator (DE-588)4131247-8 s 3\p DE-604 Operator Theory Advances and Applications 26 (DE-604)BV035421307 26 https://doi.org/10.1007/978-3-0348-5463-4 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Krupnik, Nahum 1932- Banach Algebras with Symbol and Singular Integral Operators Science (General) Science, general Naturwissenschaft Singulärer Integraloperator (DE-588)4131249-1 gnd Integraloperator (DE-588)4131247-8 gnd Fredholm-Theorie (DE-588)4155263-5 gnd Banach-Algebra (DE-588)4193187-7 gnd |
subject_GND | (DE-588)4131249-1 (DE-588)4131247-8 (DE-588)4155263-5 (DE-588)4193187-7 |
title | Banach Algebras with Symbol and Singular Integral Operators |
title_auth | Banach Algebras with Symbol and Singular Integral Operators |
title_exact_search | Banach Algebras with Symbol and Singular Integral Operators |
title_full | Banach Algebras with Symbol and Singular Integral Operators by Naum Yakovlevich Krupnik |
title_fullStr | Banach Algebras with Symbol and Singular Integral Operators by Naum Yakovlevich Krupnik |
title_full_unstemmed | Banach Algebras with Symbol and Singular Integral Operators by Naum Yakovlevich Krupnik |
title_short | Banach Algebras with Symbol and Singular Integral Operators |
title_sort | banach algebras with symbol and singular integral operators |
topic | Science (General) Science, general Naturwissenschaft Singulärer Integraloperator (DE-588)4131249-1 gnd Integraloperator (DE-588)4131247-8 gnd Fredholm-Theorie (DE-588)4155263-5 gnd Banach-Algebra (DE-588)4193187-7 gnd |
topic_facet | Science (General) Science, general Naturwissenschaft Singulärer Integraloperator Integraloperator Fredholm-Theorie Banach-Algebra |
url | https://doi.org/10.1007/978-3-0348-5463-4 |
volume_link | (DE-604)BV035421307 |
work_keys_str_mv | AT krupniknahum banachalgebraswithsymbolandsingularintegraloperators |