C0-Groups, Commutator Methods and Spectral Theory of N-Body Hamiltonians:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Basel
Springer Basel
1996
|
Ausgabe: | 2014. Reprint 2013 of the 1996 edition |
Schriftenreihe: | Modern Birkhäuser Classics
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The conjugate operator method is a powerful recently developed technique for studying spectral properties of self-adjoint operators. One of the purposes of this volume is to present a refinement of the original method due to Mourre leading to essentially optimal results in situations as varied as ordinary differential operators, pseudo-differential operators and N-body Schrödinger hamiltonians. Another topic is a new algebraic framework for the N-body problem allowing a simple and systematic treatment of large classes of many-channel hamiltonians. The monograph will be of interest to research mathematicians and mathematical physicists. The authors have made efforts to produce an essentially self-contained text, which makes it accessible to advanced students. Thus about one third of the book is devoted to the development of tools from functional analysis, in particular real interpolation theory for Banach spaces and functional calculus and Besov spaces associated with multi-parameter C0-groups. - - - Certainly this monograph (containing a bibliography of 170 items) is a well-written contribution to this field which is suitable to stimulate further evolution of the theory. (Mathematical Reviews) |
Beschreibung: | 1 Online-Ressource (XIV, 460 p) |
ISBN: | 9783034807333 9783034807326 |
ISSN: | 2197-1803 |
DOI: | 10.1007/978-3-0348-0733-3 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042421852 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1996 |||| o||u| ||||||eng d | ||
020 | |a 9783034807333 |c Online |9 978-3-0348-0733-3 | ||
020 | |a 9783034807326 |c Print |9 978-3-0348-0732-6 | ||
024 | 7 | |a 10.1007/978-3-0348-0733-3 |2 doi | |
035 | |a (OCoLC)1165608801 | ||
035 | |a (DE-599)BVBBV042421852 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515.9 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Amrein, Werner O. |e Verfasser |4 aut | |
245 | 1 | 0 | |a C0-Groups, Commutator Methods and Spectral Theory of N-Body Hamiltonians |c by Werner O. Amrein, Anne Boutet de Monvel, Vladimir Georgescu |
250 | |a 2014. Reprint 2013 of the 1996 edition | ||
264 | 1 | |a Basel |b Springer Basel |c 1996 | |
300 | |a 1 Online-Ressource (XIV, 460 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Modern Birkhäuser Classics |x 2197-1803 | |
500 | |a The conjugate operator method is a powerful recently developed technique for studying spectral properties of self-adjoint operators. One of the purposes of this volume is to present a refinement of the original method due to Mourre leading to essentially optimal results in situations as varied as ordinary differential operators, pseudo-differential operators and N-body Schrödinger hamiltonians. Another topic is a new algebraic framework for the N-body problem allowing a simple and systematic treatment of large classes of many-channel hamiltonians. The monograph will be of interest to research mathematicians and mathematical physicists. The authors have made efforts to produce an essentially self-contained text, which makes it accessible to advanced students. Thus about one third of the book is devoted to the development of tools from functional analysis, in particular real interpolation theory for Banach spaces and functional calculus and Besov spaces associated with multi-parameter C0-groups. - - - Certainly this monograph (containing a bibliography of 170 items) is a well-written contribution to this field which is suitable to stimulate further evolution of the theory. (Mathematical Reviews) | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Algebra | |
650 | 4 | |a Harmonic analysis | |
650 | 4 | |a Functions of complex variables | |
650 | 4 | |a Algebraic topology | |
650 | 4 | |a Functions of a Complex Variable | |
650 | 4 | |a Associative Rings and Algebras | |
650 | 4 | |a Algebraic Topology | |
650 | 4 | |a Abstract Harmonic Analysis | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Spektraltheorie |0 (DE-588)4116561-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kommutator |g Quantentheorie |0 (DE-588)4164827-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Dreikörperproblem |0 (DE-588)4012974-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Selbstadjungierter Operator |0 (DE-588)4180810-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hamilton-Operator |0 (DE-588)4072278-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Dreikörperproblem |0 (DE-588)4012974-3 |D s |
689 | 0 | 1 | |a Hamilton-Operator |0 (DE-588)4072278-8 |D s |
689 | 0 | 2 | |a Selbstadjungierter Operator |0 (DE-588)4180810-1 |D s |
689 | 0 | 3 | |a Spektraltheorie |0 (DE-588)4116561-5 |D s |
689 | 0 | 4 | |a Kommutator |g Quantentheorie |0 (DE-588)4164827-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Boutet de Monvel, Anne |e Sonstige |4 oth | |
700 | 1 | |a Georgescu, Vladimir |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-0348-0733-3 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857269 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153095385513984 |
---|---|
any_adam_object | |
author | Amrein, Werner O. |
author_facet | Amrein, Werner O. |
author_role | aut |
author_sort | Amrein, Werner O. |
author_variant | w o a wo woa |
building | Verbundindex |
bvnumber | BV042421852 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1165608801 (DE-599)BVBBV042421852 |
dewey-full | 515.9 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.9 |
dewey-search | 515.9 |
dewey-sort | 3515.9 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-0348-0733-3 |
edition | 2014. Reprint 2013 of the 1996 edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03739nmm a2200661zc 4500</leader><controlfield tag="001">BV042421852</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1996 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034807333</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-0348-0733-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034807326</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-0348-0732-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-0348-0733-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1165608801</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421852</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.9</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Amrein, Werner O.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">C0-Groups, Commutator Methods and Spectral Theory of N-Body Hamiltonians</subfield><subfield code="c">by Werner O. Amrein, Anne Boutet de Monvel, Vladimir Georgescu</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2014. Reprint 2013 of the 1996 edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">Springer Basel</subfield><subfield code="c">1996</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIV, 460 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Modern Birkhäuser Classics</subfield><subfield code="x">2197-1803</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The conjugate operator method is a powerful recently developed technique for studying spectral properties of self-adjoint operators. One of the purposes of this volume is to present a refinement of the original method due to Mourre leading to essentially optimal results in situations as varied as ordinary differential operators, pseudo-differential operators and N-body Schrödinger hamiltonians. Another topic is a new algebraic framework for the N-body problem allowing a simple and systematic treatment of large classes of many-channel hamiltonians. The monograph will be of interest to research mathematicians and mathematical physicists. The authors have made efforts to produce an essentially self-contained text, which makes it accessible to advanced students. Thus about one third of the book is devoted to the development of tools from functional analysis, in particular real interpolation theory for Banach spaces and functional calculus and Besov spaces associated with multi-parameter C0-groups. - - - Certainly this monograph (containing a bibliography of 170 items) is a well-written contribution to this field which is suitable to stimulate further evolution of the theory. (Mathematical Reviews) </subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Harmonic analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functions of complex variables</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functions of a Complex Variable</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Associative Rings and Algebras</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Abstract Harmonic Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Spektraltheorie</subfield><subfield code="0">(DE-588)4116561-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kommutator</subfield><subfield code="g">Quantentheorie</subfield><subfield code="0">(DE-588)4164827-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dreikörperproblem</subfield><subfield code="0">(DE-588)4012974-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Selbstadjungierter Operator</subfield><subfield code="0">(DE-588)4180810-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hamilton-Operator</subfield><subfield code="0">(DE-588)4072278-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Dreikörperproblem</subfield><subfield code="0">(DE-588)4012974-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Hamilton-Operator</subfield><subfield code="0">(DE-588)4072278-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Selbstadjungierter Operator</subfield><subfield code="0">(DE-588)4180810-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Spektraltheorie</subfield><subfield code="0">(DE-588)4116561-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Kommutator</subfield><subfield code="g">Quantentheorie</subfield><subfield code="0">(DE-588)4164827-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Boutet de Monvel, Anne</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Georgescu, Vladimir</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-0348-0733-3</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857269</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042421852 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:09Z |
institution | BVB |
isbn | 9783034807333 9783034807326 |
issn | 2197-1803 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857269 |
oclc_num | 1165608801 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XIV, 460 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1996 |
publishDateSearch | 1996 |
publishDateSort | 1996 |
publisher | Springer Basel |
record_format | marc |
series2 | Modern Birkhäuser Classics |
spelling | Amrein, Werner O. Verfasser aut C0-Groups, Commutator Methods and Spectral Theory of N-Body Hamiltonians by Werner O. Amrein, Anne Boutet de Monvel, Vladimir Georgescu 2014. Reprint 2013 of the 1996 edition Basel Springer Basel 1996 1 Online-Ressource (XIV, 460 p) txt rdacontent c rdamedia cr rdacarrier Modern Birkhäuser Classics 2197-1803 The conjugate operator method is a powerful recently developed technique for studying spectral properties of self-adjoint operators. One of the purposes of this volume is to present a refinement of the original method due to Mourre leading to essentially optimal results in situations as varied as ordinary differential operators, pseudo-differential operators and N-body Schrödinger hamiltonians. Another topic is a new algebraic framework for the N-body problem allowing a simple and systematic treatment of large classes of many-channel hamiltonians. The monograph will be of interest to research mathematicians and mathematical physicists. The authors have made efforts to produce an essentially self-contained text, which makes it accessible to advanced students. Thus about one third of the book is devoted to the development of tools from functional analysis, in particular real interpolation theory for Banach spaces and functional calculus and Besov spaces associated with multi-parameter C0-groups. - - - Certainly this monograph (containing a bibliography of 170 items) is a well-written contribution to this field which is suitable to stimulate further evolution of the theory. (Mathematical Reviews) Mathematics Algebra Harmonic analysis Functions of complex variables Algebraic topology Functions of a Complex Variable Associative Rings and Algebras Algebraic Topology Abstract Harmonic Analysis Mathematik Spektraltheorie (DE-588)4116561-5 gnd rswk-swf Kommutator Quantentheorie (DE-588)4164827-4 gnd rswk-swf Dreikörperproblem (DE-588)4012974-3 gnd rswk-swf Selbstadjungierter Operator (DE-588)4180810-1 gnd rswk-swf Hamilton-Operator (DE-588)4072278-8 gnd rswk-swf Dreikörperproblem (DE-588)4012974-3 s Hamilton-Operator (DE-588)4072278-8 s Selbstadjungierter Operator (DE-588)4180810-1 s Spektraltheorie (DE-588)4116561-5 s Kommutator Quantentheorie (DE-588)4164827-4 s 1\p DE-604 Boutet de Monvel, Anne Sonstige oth Georgescu, Vladimir Sonstige oth https://doi.org/10.1007/978-3-0348-0733-3 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Amrein, Werner O. C0-Groups, Commutator Methods and Spectral Theory of N-Body Hamiltonians Mathematics Algebra Harmonic analysis Functions of complex variables Algebraic topology Functions of a Complex Variable Associative Rings and Algebras Algebraic Topology Abstract Harmonic Analysis Mathematik Spektraltheorie (DE-588)4116561-5 gnd Kommutator Quantentheorie (DE-588)4164827-4 gnd Dreikörperproblem (DE-588)4012974-3 gnd Selbstadjungierter Operator (DE-588)4180810-1 gnd Hamilton-Operator (DE-588)4072278-8 gnd |
subject_GND | (DE-588)4116561-5 (DE-588)4164827-4 (DE-588)4012974-3 (DE-588)4180810-1 (DE-588)4072278-8 |
title | C0-Groups, Commutator Methods and Spectral Theory of N-Body Hamiltonians |
title_auth | C0-Groups, Commutator Methods and Spectral Theory of N-Body Hamiltonians |
title_exact_search | C0-Groups, Commutator Methods and Spectral Theory of N-Body Hamiltonians |
title_full | C0-Groups, Commutator Methods and Spectral Theory of N-Body Hamiltonians by Werner O. Amrein, Anne Boutet de Monvel, Vladimir Georgescu |
title_fullStr | C0-Groups, Commutator Methods and Spectral Theory of N-Body Hamiltonians by Werner O. Amrein, Anne Boutet de Monvel, Vladimir Georgescu |
title_full_unstemmed | C0-Groups, Commutator Methods and Spectral Theory of N-Body Hamiltonians by Werner O. Amrein, Anne Boutet de Monvel, Vladimir Georgescu |
title_short | C0-Groups, Commutator Methods and Spectral Theory of N-Body Hamiltonians |
title_sort | c0 groups commutator methods and spectral theory of n body hamiltonians |
topic | Mathematics Algebra Harmonic analysis Functions of complex variables Algebraic topology Functions of a Complex Variable Associative Rings and Algebras Algebraic Topology Abstract Harmonic Analysis Mathematik Spektraltheorie (DE-588)4116561-5 gnd Kommutator Quantentheorie (DE-588)4164827-4 gnd Dreikörperproblem (DE-588)4012974-3 gnd Selbstadjungierter Operator (DE-588)4180810-1 gnd Hamilton-Operator (DE-588)4072278-8 gnd |
topic_facet | Mathematics Algebra Harmonic analysis Functions of complex variables Algebraic topology Functions of a Complex Variable Associative Rings and Algebras Algebraic Topology Abstract Harmonic Analysis Mathematik Spektraltheorie Kommutator Quantentheorie Dreikörperproblem Selbstadjungierter Operator Hamilton-Operator |
url | https://doi.org/10.1007/978-3-0348-0733-3 |
work_keys_str_mv | AT amreinwernero c0groupscommutatormethodsandspectraltheoryofnbodyhamiltonians AT boutetdemonvelanne c0groupscommutatormethodsandspectraltheoryofnbodyhamiltonians AT georgescuvladimir c0groupscommutatormethodsandspectraltheoryofnbodyhamiltonians |