Vector Bundles on Complex Projective Spaces: With an Appendix by S. I. Gelfand
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Basel
Springer Basel
1980
|
Schriftenreihe: | Modern Birkhäuser Classics
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This expository treatment is based on a survey given by one of the authors at the Séminaire Bourbaki in November 1978 and on a subsequent course held at the University of Göttingen. It is intended to serve as an introduction to the topical question of classification of holomorphic vector bundles on complex projective spaces, and can easily be read by students with a basic knowledge of analytic or algebraic geometry. Short supplementary sections describe more advanced topics, further results, and unsolved problems. This is a corrected third printing with an Appendix by S. I. Gelfand. ------ The present book is the first one, within the extensive literature on algebraic vector bundles, to give both a self-contained introduction to the basic methods and an exposition of the current state of the classification theory of algebraic vector bundles over Pn(C). (…) The reviewer thinks that readers should be grateful to the authors for presenting the first detailed, self-contained and systematic textbook on vector bundles over projective varieties. They have put in a lot of their own results to simplify and to systematize many proofs, and to lead the reader to the current research in this field as quickly as possible. (Mathematical Reviews) (…) every section ends with historical comments, further results, and open questions. This brings the reader up to date and provides a guide for further work. (Bulletin of the American Mathematical Society) (…) the fundamental appendix essentially enhance this outstanding standard textbook and research monograph on vector bundles. (Mathematical Reviews) |
Beschreibung: | 1 Online-Ressource (VIII, 239p) |
ISBN: | 9783034801515 9783034801508 |
DOI: | 10.1007/978-3-0348-0151-5 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042421837 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1980 |||| o||u| ||||||eng d | ||
020 | |a 9783034801515 |c Online |9 978-3-0348-0151-5 | ||
020 | |a 9783034801508 |c Print |9 978-3-0348-0150-8 | ||
024 | 7 | |a 10.1007/978-3-0348-0151-5 |2 doi | |
035 | |a (OCoLC)863685856 | ||
035 | |a (DE-599)BVBBV042421837 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 510 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Okonek, Christian |e Verfasser |4 aut | |
245 | 1 | 0 | |a Vector Bundles on Complex Projective Spaces |b With an Appendix by S. I. Gelfand |c by Christian Okonek, Michael Schneider, Heinz Spindler |
264 | 1 | |a Basel |b Springer Basel |c 1980 | |
300 | |a 1 Online-Ressource (VIII, 239p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Modern Birkhäuser Classics | |
500 | |a This expository treatment is based on a survey given by one of the authors at the Séminaire Bourbaki in November 1978 and on a subsequent course held at the University of Göttingen. It is intended to serve as an introduction to the topical question of classification of holomorphic vector bundles on complex projective spaces, and can easily be read by students with a basic knowledge of analytic or algebraic geometry. Short supplementary sections describe more advanced topics, further results, and unsolved problems. This is a corrected third printing with an Appendix by S. I. Gelfand. ------ The present book is the first one, within the extensive literature on algebraic vector bundles, to give both a self-contained introduction to the basic methods and an exposition of the current state of the classification theory of algebraic vector bundles over Pn(C). (…) The reviewer thinks that readers should be grateful to the authors for presenting the first detailed, self-contained and systematic textbook on vector bundles over projective varieties. They have put in a lot of their own results to simplify and to systematize many proofs, and to lead the reader to the current research in this field as quickly as possible. (Mathematical Reviews) (…) every section ends with historical comments, further results, and open questions. This brings the reader up to date and provides a guide for further work. (Bulletin of the American Mathematical Society) (…) the fundamental appendix essentially enhance this outstanding standard textbook and research monograph on vector bundles. (Mathematical Reviews) | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Mathematics, general | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Holomorphes Vektorraumbündel |0 (DE-588)4160483-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Klassifikation |0 (DE-588)4030958-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Vektorraumbündel |0 (DE-588)4187470-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Projektiver Raum |0 (DE-588)4175893-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Projektive Geometrie |0 (DE-588)4047436-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algebraische Geometrie |0 (DE-588)4001161-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Holomorphes Vektorraumbündel |0 (DE-588)4160483-0 |D s |
689 | 0 | 1 | |a Klassifikation |0 (DE-588)4030958-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Holomorphes Vektorraumbündel |0 (DE-588)4160483-0 |D s |
689 | 1 | 1 | |a Projektiver Raum |0 (DE-588)4175893-6 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Vektorraumbündel |0 (DE-588)4187470-5 |D s |
689 | 2 | 1 | |a Projektive Geometrie |0 (DE-588)4047436-7 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
689 | 3 | 0 | |a Algebraische Geometrie |0 (DE-588)4001161-6 |D s |
689 | 3 | |8 4\p |5 DE-604 | |
700 | 1 | |a Schneider, Michael |e Sonstige |4 oth | |
700 | 1 | |a Spindler, Heinz |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-0348-0151-5 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857254 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153095355105280 |
---|---|
any_adam_object | |
author | Okonek, Christian |
author_facet | Okonek, Christian |
author_role | aut |
author_sort | Okonek, Christian |
author_variant | c o co |
building | Verbundindex |
bvnumber | BV042421837 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863685856 (DE-599)BVBBV042421837 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-0348-0151-5 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04323nmm a2200673zc 4500</leader><controlfield tag="001">BV042421837</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1980 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034801515</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-0348-0151-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034801508</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-0348-0150-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-0348-0151-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863685856</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421837</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Okonek, Christian</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Vector Bundles on Complex Projective Spaces</subfield><subfield code="b">With an Appendix by S. I. Gelfand</subfield><subfield code="c">by Christian Okonek, Michael Schneider, Heinz Spindler</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">Springer Basel</subfield><subfield code="c">1980</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VIII, 239p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Modern Birkhäuser Classics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This expository treatment is based on a survey given by one of the authors at the Séminaire Bourbaki in November 1978 and on a subsequent course held at the University of Göttingen. It is intended to serve as an introduction to the topical question of classification of holomorphic vector bundles on complex projective spaces, and can easily be read by students with a basic knowledge of analytic or algebraic geometry. Short supplementary sections describe more advanced topics, further results, and unsolved problems. This is a corrected third printing with an Appendix by S. I. Gelfand. ------ The present book is the first one, within the extensive literature on algebraic vector bundles, to give both a self-contained introduction to the basic methods and an exposition of the current state of the classification theory of algebraic vector bundles over Pn(C). (…) The reviewer thinks that readers should be grateful to the authors for presenting the first detailed, self-contained and systematic textbook on vector bundles over projective varieties. They have put in a lot of their own results to simplify and to systematize many proofs, and to lead the reader to the current research in this field as quickly as possible. (Mathematical Reviews) (…) every section ends with historical comments, further results, and open questions. This brings the reader up to date and provides a guide for further work. (Bulletin of the American Mathematical Society) (…) the fundamental appendix essentially enhance this outstanding standard textbook and research monograph on vector bundles. (Mathematical Reviews)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Holomorphes Vektorraumbündel</subfield><subfield code="0">(DE-588)4160483-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Klassifikation</subfield><subfield code="0">(DE-588)4030958-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Vektorraumbündel</subfield><subfield code="0">(DE-588)4187470-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Projektiver Raum</subfield><subfield code="0">(DE-588)4175893-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Projektive Geometrie</subfield><subfield code="0">(DE-588)4047436-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Geometrie</subfield><subfield code="0">(DE-588)4001161-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Holomorphes Vektorraumbündel</subfield><subfield code="0">(DE-588)4160483-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Klassifikation</subfield><subfield code="0">(DE-588)4030958-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Holomorphes Vektorraumbündel</subfield><subfield code="0">(DE-588)4160483-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Projektiver Raum</subfield><subfield code="0">(DE-588)4175893-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Vektorraumbündel</subfield><subfield code="0">(DE-588)4187470-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Projektive Geometrie</subfield><subfield code="0">(DE-588)4047436-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Algebraische Geometrie</subfield><subfield code="0">(DE-588)4001161-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schneider, Michael</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Spindler, Heinz</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-0348-0151-5</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857254</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042421837 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:09Z |
institution | BVB |
isbn | 9783034801515 9783034801508 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857254 |
oclc_num | 863685856 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (VIII, 239p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1980 |
publishDateSearch | 1980 |
publishDateSort | 1980 |
publisher | Springer Basel |
record_format | marc |
series2 | Modern Birkhäuser Classics |
spelling | Okonek, Christian Verfasser aut Vector Bundles on Complex Projective Spaces With an Appendix by S. I. Gelfand by Christian Okonek, Michael Schneider, Heinz Spindler Basel Springer Basel 1980 1 Online-Ressource (VIII, 239p) txt rdacontent c rdamedia cr rdacarrier Modern Birkhäuser Classics This expository treatment is based on a survey given by one of the authors at the Séminaire Bourbaki in November 1978 and on a subsequent course held at the University of Göttingen. It is intended to serve as an introduction to the topical question of classification of holomorphic vector bundles on complex projective spaces, and can easily be read by students with a basic knowledge of analytic or algebraic geometry. Short supplementary sections describe more advanced topics, further results, and unsolved problems. This is a corrected third printing with an Appendix by S. I. Gelfand. ------ The present book is the first one, within the extensive literature on algebraic vector bundles, to give both a self-contained introduction to the basic methods and an exposition of the current state of the classification theory of algebraic vector bundles over Pn(C). (…) The reviewer thinks that readers should be grateful to the authors for presenting the first detailed, self-contained and systematic textbook on vector bundles over projective varieties. They have put in a lot of their own results to simplify and to systematize many proofs, and to lead the reader to the current research in this field as quickly as possible. (Mathematical Reviews) (…) every section ends with historical comments, further results, and open questions. This brings the reader up to date and provides a guide for further work. (Bulletin of the American Mathematical Society) (…) the fundamental appendix essentially enhance this outstanding standard textbook and research monograph on vector bundles. (Mathematical Reviews) Mathematics Mathematics, general Mathematik Holomorphes Vektorraumbündel (DE-588)4160483-0 gnd rswk-swf Klassifikation (DE-588)4030958-7 gnd rswk-swf Vektorraumbündel (DE-588)4187470-5 gnd rswk-swf Projektiver Raum (DE-588)4175893-6 gnd rswk-swf Projektive Geometrie (DE-588)4047436-7 gnd rswk-swf Algebraische Geometrie (DE-588)4001161-6 gnd rswk-swf Holomorphes Vektorraumbündel (DE-588)4160483-0 s Klassifikation (DE-588)4030958-7 s 1\p DE-604 Projektiver Raum (DE-588)4175893-6 s 2\p DE-604 Vektorraumbündel (DE-588)4187470-5 s Projektive Geometrie (DE-588)4047436-7 s 3\p DE-604 Algebraische Geometrie (DE-588)4001161-6 s 4\p DE-604 Schneider, Michael Sonstige oth Spindler, Heinz Sonstige oth https://doi.org/10.1007/978-3-0348-0151-5 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Okonek, Christian Vector Bundles on Complex Projective Spaces With an Appendix by S. I. Gelfand Mathematics Mathematics, general Mathematik Holomorphes Vektorraumbündel (DE-588)4160483-0 gnd Klassifikation (DE-588)4030958-7 gnd Vektorraumbündel (DE-588)4187470-5 gnd Projektiver Raum (DE-588)4175893-6 gnd Projektive Geometrie (DE-588)4047436-7 gnd Algebraische Geometrie (DE-588)4001161-6 gnd |
subject_GND | (DE-588)4160483-0 (DE-588)4030958-7 (DE-588)4187470-5 (DE-588)4175893-6 (DE-588)4047436-7 (DE-588)4001161-6 |
title | Vector Bundles on Complex Projective Spaces With an Appendix by S. I. Gelfand |
title_auth | Vector Bundles on Complex Projective Spaces With an Appendix by S. I. Gelfand |
title_exact_search | Vector Bundles on Complex Projective Spaces With an Appendix by S. I. Gelfand |
title_full | Vector Bundles on Complex Projective Spaces With an Appendix by S. I. Gelfand by Christian Okonek, Michael Schneider, Heinz Spindler |
title_fullStr | Vector Bundles on Complex Projective Spaces With an Appendix by S. I. Gelfand by Christian Okonek, Michael Schneider, Heinz Spindler |
title_full_unstemmed | Vector Bundles on Complex Projective Spaces With an Appendix by S. I. Gelfand by Christian Okonek, Michael Schneider, Heinz Spindler |
title_short | Vector Bundles on Complex Projective Spaces |
title_sort | vector bundles on complex projective spaces with an appendix by s i gelfand |
title_sub | With an Appendix by S. I. Gelfand |
topic | Mathematics Mathematics, general Mathematik Holomorphes Vektorraumbündel (DE-588)4160483-0 gnd Klassifikation (DE-588)4030958-7 gnd Vektorraumbündel (DE-588)4187470-5 gnd Projektiver Raum (DE-588)4175893-6 gnd Projektive Geometrie (DE-588)4047436-7 gnd Algebraische Geometrie (DE-588)4001161-6 gnd |
topic_facet | Mathematics Mathematics, general Mathematik Holomorphes Vektorraumbündel Klassifikation Vektorraumbündel Projektiver Raum Projektive Geometrie Algebraische Geometrie |
url | https://doi.org/10.1007/978-3-0348-0151-5 |
work_keys_str_mv | AT okonekchristian vectorbundlesoncomplexprojectivespaceswithanappendixbysigelfand AT schneidermichael vectorbundlesoncomplexprojectivespaceswithanappendixbysigelfand AT spindlerheinz vectorbundlesoncomplexprojectivespaceswithanappendixbysigelfand |