Fractals and Spectra: Related to Fourier Analysis and Function Spaces
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Basel
Springer Basel
1997
|
Schriftenreihe: | Modern Birkhäuser Classics
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Fractals and Spectra Hans Triebel This book deals with the symbiotic relationship between the theory of function spaces, fractal geometry, and spectral theory of (fractal) pseudodifferential operators as it has emerged quite recently. Atomic and quarkonial (subatomic) decompositions in scalar and vector valued function spaces on the euclidean n-space pave the way to study properties (compact embeddings, entropy numbers) of function spaces on and of fractals. On this basis, distributions of eigenvalues of fractal (pseudo)differential operators are investigated. Diverse versions of fractal drums are played. The book is directed to mathematicians interested in functional analysis, the theory of function spaces, fractal geometry, partial and pseudodifferential operators, and, in particular, in how these domains are interrelated. ------ It is worth mentioning that there is virtually no literature on this topic and hence the most of the presented material is published here the first time. - Zentralblatt MATH (…) the monograph presents in a self-contained and very readable and lively form a new, intriguing and potentially very useful chapter of the theory of pseudodifferential operators. - Mathematical Reviews The book deals with a very recent topic and presents the significant contributions of the author. It is directed to mathematicians interested in the interrelations between function spaces and fractal geometry and is also of interest for graduate students. - Operator Theory Reviews |
Beschreibung: | 1 Online-Ressource (VIII, 271p) |
ISBN: | 9783034800341 9783034800334 |
DOI: | 10.1007/978-3-0348-0034-1 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042421832 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1997 |||| o||u| ||||||eng d | ||
020 | |a 9783034800341 |c Online |9 978-3-0348-0034-1 | ||
020 | |a 9783034800334 |c Print |9 978-3-0348-0033-4 | ||
024 | 7 | |a 10.1007/978-3-0348-0034-1 |2 doi | |
035 | |a (OCoLC)1184409310 | ||
035 | |a (DE-599)BVBBV042421832 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Triebel, Hans |e Verfasser |4 aut | |
245 | 1 | 0 | |a Fractals and Spectra |b Related to Fourier Analysis and Function Spaces |c by Hans Triebel |
264 | 1 | |a Basel |b Springer Basel |c 1997 | |
300 | |a 1 Online-Ressource (VIII, 271p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Modern Birkhäuser Classics | |
500 | |a Fractals and Spectra Hans Triebel This book deals with the symbiotic relationship between the theory of function spaces, fractal geometry, and spectral theory of (fractal) pseudodifferential operators as it has emerged quite recently. Atomic and quarkonial (subatomic) decompositions in scalar and vector valued function spaces on the euclidean n-space pave the way to study properties (compact embeddings, entropy numbers) of function spaces on and of fractals. On this basis, distributions of eigenvalues of fractal (pseudo)differential operators are investigated. Diverse versions of fractal drums are played. The book is directed to mathematicians interested in functional analysis, the theory of function spaces, fractal geometry, partial and pseudodifferential operators, and, in particular, in how these domains are interrelated. ------ It is worth mentioning that there is virtually no literature on this topic and hence the most of the presented material is published here the first time. - Zentralblatt MATH (…) the monograph presents in a self-contained and very readable and lively form a new, intriguing and potentially very useful chapter of the theory of pseudodifferential operators. - Mathematical Reviews The book deals with a very recent topic and presents the significant contributions of the author. It is directed to mathematicians interested in the interrelations between function spaces and fractal geometry and is also of interest for graduate students. - Operator Theory Reviews | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Analysis | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Funktionenraum |0 (DE-588)4134834-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Pseudodifferentialoperator |0 (DE-588)4047640-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Fraktal |0 (DE-588)4123220-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Fraktalgeometrie |0 (DE-588)4473576-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Funktionalraum |0 (DE-588)4155679-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Harmonische Analyse |0 (DE-588)4023453-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Spektraltheorie |0 (DE-588)4116561-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Funktionenraum |0 (DE-588)4134834-5 |D s |
689 | 0 | 1 | |a Fraktalgeometrie |0 (DE-588)4473576-5 |D s |
689 | 0 | 2 | |a Pseudodifferentialoperator |0 (DE-588)4047640-6 |D s |
689 | 0 | 3 | |a Spektraltheorie |0 (DE-588)4116561-5 |D s |
689 | 0 | 4 | |a Harmonische Analyse |0 (DE-588)4023453-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Funktionalraum |0 (DE-588)4155679-3 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Fraktal |0 (DE-588)4123220-3 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-0348-0034-1 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857249 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153095327842304 |
---|---|
any_adam_object | |
author | Triebel, Hans |
author_facet | Triebel, Hans |
author_role | aut |
author_sort | Triebel, Hans |
author_variant | h t ht |
building | Verbundindex |
bvnumber | BV042421832 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184409310 (DE-599)BVBBV042421832 |
dewey-full | 515 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515 |
dewey-search | 515 |
dewey-sort | 3515 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-0348-0034-1 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03984nmm a2200649zc 4500</leader><controlfield tag="001">BV042421832</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1997 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034800341</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-0348-0034-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034800334</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-0348-0033-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-0348-0034-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184409310</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421832</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Triebel, Hans</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fractals and Spectra</subfield><subfield code="b">Related to Fourier Analysis and Function Spaces</subfield><subfield code="c">by Hans Triebel</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">Springer Basel</subfield><subfield code="c">1997</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VIII, 271p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Modern Birkhäuser Classics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Fractals and Spectra Hans Triebel This book deals with the symbiotic relationship between the theory of function spaces, fractal geometry, and spectral theory of (fractal) pseudodifferential operators as it has emerged quite recently. Atomic and quarkonial (subatomic) decompositions in scalar and vector valued function spaces on the euclidean n-space pave the way to study properties (compact embeddings, entropy numbers) of function spaces on and of fractals. On this basis, distributions of eigenvalues of fractal (pseudo)differential operators are investigated. Diverse versions of fractal drums are played. The book is directed to mathematicians interested in functional analysis, the theory of function spaces, fractal geometry, partial and pseudodifferential operators, and, in particular, in how these domains are interrelated. ------ It is worth mentioning that there is virtually no literature on this topic and hence the most of the presented material is published here the first time. - Zentralblatt MATH (…) the monograph presents in a self-contained and very readable and lively form a new, intriguing and potentially very useful chapter of the theory of pseudodifferential operators. - Mathematical Reviews The book deals with a very recent topic and presents the significant contributions of the author. It is directed to mathematicians interested in the interrelations between function spaces and fractal geometry and is also of interest for graduate students. - Operator Theory Reviews</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktionenraum</subfield><subfield code="0">(DE-588)4134834-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Pseudodifferentialoperator</subfield><subfield code="0">(DE-588)4047640-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fraktal</subfield><subfield code="0">(DE-588)4123220-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fraktalgeometrie</subfield><subfield code="0">(DE-588)4473576-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktionalraum</subfield><subfield code="0">(DE-588)4155679-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Harmonische Analyse</subfield><subfield code="0">(DE-588)4023453-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Spektraltheorie</subfield><subfield code="0">(DE-588)4116561-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Funktionenraum</subfield><subfield code="0">(DE-588)4134834-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Fraktalgeometrie</subfield><subfield code="0">(DE-588)4473576-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Pseudodifferentialoperator</subfield><subfield code="0">(DE-588)4047640-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Spektraltheorie</subfield><subfield code="0">(DE-588)4116561-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Harmonische Analyse</subfield><subfield code="0">(DE-588)4023453-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Funktionalraum</subfield><subfield code="0">(DE-588)4155679-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Fraktal</subfield><subfield code="0">(DE-588)4123220-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-0348-0034-1</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857249</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042421832 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:09Z |
institution | BVB |
isbn | 9783034800341 9783034800334 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857249 |
oclc_num | 1184409310 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (VIII, 271p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1997 |
publishDateSearch | 1997 |
publishDateSort | 1997 |
publisher | Springer Basel |
record_format | marc |
series2 | Modern Birkhäuser Classics |
spelling | Triebel, Hans Verfasser aut Fractals and Spectra Related to Fourier Analysis and Function Spaces by Hans Triebel Basel Springer Basel 1997 1 Online-Ressource (VIII, 271p) txt rdacontent c rdamedia cr rdacarrier Modern Birkhäuser Classics Fractals and Spectra Hans Triebel This book deals with the symbiotic relationship between the theory of function spaces, fractal geometry, and spectral theory of (fractal) pseudodifferential operators as it has emerged quite recently. Atomic and quarkonial (subatomic) decompositions in scalar and vector valued function spaces on the euclidean n-space pave the way to study properties (compact embeddings, entropy numbers) of function spaces on and of fractals. On this basis, distributions of eigenvalues of fractal (pseudo)differential operators are investigated. Diverse versions of fractal drums are played. The book is directed to mathematicians interested in functional analysis, the theory of function spaces, fractal geometry, partial and pseudodifferential operators, and, in particular, in how these domains are interrelated. ------ It is worth mentioning that there is virtually no literature on this topic and hence the most of the presented material is published here the first time. - Zentralblatt MATH (…) the monograph presents in a self-contained and very readable and lively form a new, intriguing and potentially very useful chapter of the theory of pseudodifferential operators. - Mathematical Reviews The book deals with a very recent topic and presents the significant contributions of the author. It is directed to mathematicians interested in the interrelations between function spaces and fractal geometry and is also of interest for graduate students. - Operator Theory Reviews Mathematics Global analysis (Mathematics) Analysis Mathematik Funktionenraum (DE-588)4134834-5 gnd rswk-swf Pseudodifferentialoperator (DE-588)4047640-6 gnd rswk-swf Fraktal (DE-588)4123220-3 gnd rswk-swf Fraktalgeometrie (DE-588)4473576-5 gnd rswk-swf Funktionalraum (DE-588)4155679-3 gnd rswk-swf Harmonische Analyse (DE-588)4023453-8 gnd rswk-swf Spektraltheorie (DE-588)4116561-5 gnd rswk-swf Funktionenraum (DE-588)4134834-5 s Fraktalgeometrie (DE-588)4473576-5 s Pseudodifferentialoperator (DE-588)4047640-6 s Spektraltheorie (DE-588)4116561-5 s Harmonische Analyse (DE-588)4023453-8 s 1\p DE-604 Funktionalraum (DE-588)4155679-3 s 2\p DE-604 Fraktal (DE-588)4123220-3 s 3\p DE-604 https://doi.org/10.1007/978-3-0348-0034-1 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Triebel, Hans Fractals and Spectra Related to Fourier Analysis and Function Spaces Mathematics Global analysis (Mathematics) Analysis Mathematik Funktionenraum (DE-588)4134834-5 gnd Pseudodifferentialoperator (DE-588)4047640-6 gnd Fraktal (DE-588)4123220-3 gnd Fraktalgeometrie (DE-588)4473576-5 gnd Funktionalraum (DE-588)4155679-3 gnd Harmonische Analyse (DE-588)4023453-8 gnd Spektraltheorie (DE-588)4116561-5 gnd |
subject_GND | (DE-588)4134834-5 (DE-588)4047640-6 (DE-588)4123220-3 (DE-588)4473576-5 (DE-588)4155679-3 (DE-588)4023453-8 (DE-588)4116561-5 |
title | Fractals and Spectra Related to Fourier Analysis and Function Spaces |
title_auth | Fractals and Spectra Related to Fourier Analysis and Function Spaces |
title_exact_search | Fractals and Spectra Related to Fourier Analysis and Function Spaces |
title_full | Fractals and Spectra Related to Fourier Analysis and Function Spaces by Hans Triebel |
title_fullStr | Fractals and Spectra Related to Fourier Analysis and Function Spaces by Hans Triebel |
title_full_unstemmed | Fractals and Spectra Related to Fourier Analysis and Function Spaces by Hans Triebel |
title_short | Fractals and Spectra |
title_sort | fractals and spectra related to fourier analysis and function spaces |
title_sub | Related to Fourier Analysis and Function Spaces |
topic | Mathematics Global analysis (Mathematics) Analysis Mathematik Funktionenraum (DE-588)4134834-5 gnd Pseudodifferentialoperator (DE-588)4047640-6 gnd Fraktal (DE-588)4123220-3 gnd Fraktalgeometrie (DE-588)4473576-5 gnd Funktionalraum (DE-588)4155679-3 gnd Harmonische Analyse (DE-588)4023453-8 gnd Spektraltheorie (DE-588)4116561-5 gnd |
topic_facet | Mathematics Global analysis (Mathematics) Analysis Mathematik Funktionenraum Pseudodifferentialoperator Fraktal Fraktalgeometrie Funktionalraum Harmonische Analyse Spektraltheorie |
url | https://doi.org/10.1007/978-3-0348-0034-1 |
work_keys_str_mv | AT triebelhans fractalsandspectrarelatedtofourieranalysisandfunctionspaces |