Elliptic Differential Equations and Obstacle Problems:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Springer US
1987
|
Schriftenreihe: | University Series in Mathematics
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | In the few years since their appearance in the mid-sixties, variational inequalities have developed to such an extent and so thoroughly that they may now be considered an "institutional" development of the theory of differential equations (with appreciable feedback as will be shown). This book was written in the light of these considerations both in regard to the choice of topics and to their treatment. In short, roughly speaking my intention was to write a book on second-order elliptic operators, with the first half of the book, as might be expected, dedicated to function spaces and to linear theory whereas the second, nonlinear half would deal with variational inequalities and non variational obstacle problems, rather than, for example, with quasilinear or fully nonlinear equations (with a few exceptions to which I shall return later). This approach has led me to omit any mention of "physical" motivations in the wide sense of the term, in spite of their historical and continuing importance in the development of variational inequalities. I here addressed myself to a potential reader more or less aware of the significant role of variational inequalities in numerous fields of applied mathematics who could use an analytic presentation of the fundamental theory, which would be as general and self-contained as possible |
Beschreibung: | 1 Online-Ressource (XVI, 354 p) |
ISBN: | 9781489936141 9781489936165 |
DOI: | 10.1007/978-1-4899-3614-1 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042421788 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1987 |||| o||u| ||||||eng d | ||
020 | |a 9781489936141 |c Online |9 978-1-4899-3614-1 | ||
020 | |a 9781489936165 |c Print |9 978-1-4899-3616-5 | ||
024 | 7 | |a 10.1007/978-1-4899-3614-1 |2 doi | |
035 | |a (OCoLC)859369752 | ||
035 | |a (DE-599)BVBBV042421788 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Troianiello, Giovanni Maria |e Verfasser |4 aut | |
245 | 1 | 0 | |a Elliptic Differential Equations and Obstacle Problems |c by Giovanni Maria Troianiello |
264 | 1 | |a Boston, MA |b Springer US |c 1987 | |
300 | |a 1 Online-Ressource (XVI, 354 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a University Series in Mathematics | |
500 | |a In the few years since their appearance in the mid-sixties, variational inequalities have developed to such an extent and so thoroughly that they may now be considered an "institutional" development of the theory of differential equations (with appreciable feedback as will be shown). This book was written in the light of these considerations both in regard to the choice of topics and to their treatment. In short, roughly speaking my intention was to write a book on second-order elliptic operators, with the first half of the book, as might be expected, dedicated to function spaces and to linear theory whereas the second, nonlinear half would deal with variational inequalities and non variational obstacle problems, rather than, for example, with quasilinear or fully nonlinear equations (with a few exceptions to which I shall return later). This approach has led me to omit any mention of "physical" motivations in the wide sense of the term, in spite of their historical and continuing importance in the development of variational inequalities. I here addressed myself to a potential reader more or less aware of the significant role of variational inequalities in numerous fields of applied mathematics who could use an analytic presentation of the fundamental theory, which would be as general and self-contained as possible | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Analysis | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Elliptische Differentialgleichung |0 (DE-588)4014485-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Variationsrechnung |0 (DE-588)4062355-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Variationsungleichung |0 (DE-588)4187420-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hindernisproblem |0 (DE-588)4159901-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Elliptischer Differentialoperator |0 (DE-588)4140057-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Elliptischer Differentialoperator |0 (DE-588)4140057-4 |D s |
689 | 0 | 1 | |a Hindernisproblem |0 (DE-588)4159901-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Elliptische Differentialgleichung |0 (DE-588)4014485-9 |D s |
689 | 1 | 1 | |a Variationsrechnung |0 (DE-588)4062355-5 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Elliptische Differentialgleichung |0 (DE-588)4014485-9 |D s |
689 | 2 | 1 | |a Variationsungleichung |0 (DE-588)4187420-1 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4899-3614-1 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857205 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153095240810496 |
---|---|
any_adam_object | |
author | Troianiello, Giovanni Maria |
author_facet | Troianiello, Giovanni Maria |
author_role | aut |
author_sort | Troianiello, Giovanni Maria |
author_variant | g m t gm gmt |
building | Verbundindex |
bvnumber | BV042421788 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)859369752 (DE-599)BVBBV042421788 |
dewey-full | 515 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515 |
dewey-search | 515 |
dewey-sort | 3515 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4899-3614-1 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03744nmm a2200613zc 4500</leader><controlfield tag="001">BV042421788</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1987 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781489936141</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4899-3614-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781489936165</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4899-3616-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4899-3614-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)859369752</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421788</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Troianiello, Giovanni Maria</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Elliptic Differential Equations and Obstacle Problems</subfield><subfield code="c">by Giovanni Maria Troianiello</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Springer US</subfield><subfield code="c">1987</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVI, 354 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">University Series in Mathematics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">In the few years since their appearance in the mid-sixties, variational inequalities have developed to such an extent and so thoroughly that they may now be considered an "institutional" development of the theory of differential equations (with appreciable feedback as will be shown). This book was written in the light of these considerations both in regard to the choice of topics and to their treatment. In short, roughly speaking my intention was to write a book on second-order elliptic operators, with the first half of the book, as might be expected, dedicated to function spaces and to linear theory whereas the second, nonlinear half would deal with variational inequalities and non variational obstacle problems, rather than, for example, with quasilinear or fully nonlinear equations (with a few exceptions to which I shall return later). This approach has led me to omit any mention of "physical" motivations in the wide sense of the term, in spite of their historical and continuing importance in the development of variational inequalities. I here addressed myself to a potential reader more or less aware of the significant role of variational inequalities in numerous fields of applied mathematics who could use an analytic presentation of the fundamental theory, which would be as general and self-contained as possible</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elliptische Differentialgleichung</subfield><subfield code="0">(DE-588)4014485-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Variationsrechnung</subfield><subfield code="0">(DE-588)4062355-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Variationsungleichung</subfield><subfield code="0">(DE-588)4187420-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hindernisproblem</subfield><subfield code="0">(DE-588)4159901-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elliptischer Differentialoperator</subfield><subfield code="0">(DE-588)4140057-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Elliptischer Differentialoperator</subfield><subfield code="0">(DE-588)4140057-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Hindernisproblem</subfield><subfield code="0">(DE-588)4159901-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Elliptische Differentialgleichung</subfield><subfield code="0">(DE-588)4014485-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Variationsrechnung</subfield><subfield code="0">(DE-588)4062355-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Elliptische Differentialgleichung</subfield><subfield code="0">(DE-588)4014485-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Variationsungleichung</subfield><subfield code="0">(DE-588)4187420-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4899-3614-1</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857205</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042421788 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:09Z |
institution | BVB |
isbn | 9781489936141 9781489936165 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857205 |
oclc_num | 859369752 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XVI, 354 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1987 |
publishDateSearch | 1987 |
publishDateSort | 1987 |
publisher | Springer US |
record_format | marc |
series2 | University Series in Mathematics |
spelling | Troianiello, Giovanni Maria Verfasser aut Elliptic Differential Equations and Obstacle Problems by Giovanni Maria Troianiello Boston, MA Springer US 1987 1 Online-Ressource (XVI, 354 p) txt rdacontent c rdamedia cr rdacarrier University Series in Mathematics In the few years since their appearance in the mid-sixties, variational inequalities have developed to such an extent and so thoroughly that they may now be considered an "institutional" development of the theory of differential equations (with appreciable feedback as will be shown). This book was written in the light of these considerations both in regard to the choice of topics and to their treatment. In short, roughly speaking my intention was to write a book on second-order elliptic operators, with the first half of the book, as might be expected, dedicated to function spaces and to linear theory whereas the second, nonlinear half would deal with variational inequalities and non variational obstacle problems, rather than, for example, with quasilinear or fully nonlinear equations (with a few exceptions to which I shall return later). This approach has led me to omit any mention of "physical" motivations in the wide sense of the term, in spite of their historical and continuing importance in the development of variational inequalities. I here addressed myself to a potential reader more or less aware of the significant role of variational inequalities in numerous fields of applied mathematics who could use an analytic presentation of the fundamental theory, which would be as general and self-contained as possible Mathematics Global analysis (Mathematics) Analysis Mathematik Elliptische Differentialgleichung (DE-588)4014485-9 gnd rswk-swf Variationsrechnung (DE-588)4062355-5 gnd rswk-swf Variationsungleichung (DE-588)4187420-1 gnd rswk-swf Hindernisproblem (DE-588)4159901-9 gnd rswk-swf Elliptischer Differentialoperator (DE-588)4140057-4 gnd rswk-swf Elliptischer Differentialoperator (DE-588)4140057-4 s Hindernisproblem (DE-588)4159901-9 s 1\p DE-604 Elliptische Differentialgleichung (DE-588)4014485-9 s Variationsrechnung (DE-588)4062355-5 s 2\p DE-604 Variationsungleichung (DE-588)4187420-1 s 3\p DE-604 https://doi.org/10.1007/978-1-4899-3614-1 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Troianiello, Giovanni Maria Elliptic Differential Equations and Obstacle Problems Mathematics Global analysis (Mathematics) Analysis Mathematik Elliptische Differentialgleichung (DE-588)4014485-9 gnd Variationsrechnung (DE-588)4062355-5 gnd Variationsungleichung (DE-588)4187420-1 gnd Hindernisproblem (DE-588)4159901-9 gnd Elliptischer Differentialoperator (DE-588)4140057-4 gnd |
subject_GND | (DE-588)4014485-9 (DE-588)4062355-5 (DE-588)4187420-1 (DE-588)4159901-9 (DE-588)4140057-4 |
title | Elliptic Differential Equations and Obstacle Problems |
title_auth | Elliptic Differential Equations and Obstacle Problems |
title_exact_search | Elliptic Differential Equations and Obstacle Problems |
title_full | Elliptic Differential Equations and Obstacle Problems by Giovanni Maria Troianiello |
title_fullStr | Elliptic Differential Equations and Obstacle Problems by Giovanni Maria Troianiello |
title_full_unstemmed | Elliptic Differential Equations and Obstacle Problems by Giovanni Maria Troianiello |
title_short | Elliptic Differential Equations and Obstacle Problems |
title_sort | elliptic differential equations and obstacle problems |
topic | Mathematics Global analysis (Mathematics) Analysis Mathematik Elliptische Differentialgleichung (DE-588)4014485-9 gnd Variationsrechnung (DE-588)4062355-5 gnd Variationsungleichung (DE-588)4187420-1 gnd Hindernisproblem (DE-588)4159901-9 gnd Elliptischer Differentialoperator (DE-588)4140057-4 gnd |
topic_facet | Mathematics Global analysis (Mathematics) Analysis Mathematik Elliptische Differentialgleichung Variationsrechnung Variationsungleichung Hindernisproblem Elliptischer Differentialoperator |
url | https://doi.org/10.1007/978-1-4899-3614-1 |
work_keys_str_mv | AT troianiellogiovannimaria ellipticdifferentialequationsandobstacleproblems |