Unsolved Problems in Number Theory:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1994
|
Ausgabe: | Second Edition |
Schriftenreihe: | Problem Books in Mathematics, Unsolved Problems in Intuitive Mathematics
1 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | To many laymen, mathematicians appear to be problem solvers, people who do "hard sums". Even inside the profession we dassify ouselves as either theorists or problem solvers. Mathematics is kept alive, much more than by the activities of either dass, by the appearance of a succession of unsolved problems, both from within mathematics itself and from the increasing number of disciplines where it is applied. Mathematics often owes more to those who ask questions than to those who answer them. The solution of a problem may stifte interest in the area around it. But "Fermat 's Last Theorem", because it is not yet a theorem, has generated a great deal of "good" mathematics, whether goodness is judged by beauty, by depth or by applicability. To pose good unsolved problems is a difficult art. The balance between triviality and hopeless unsolvability is delicate. There are many simply stated problems which experts tell us are unlikely to be solved in the next generation. But we have seen the Four Color Conjecture settled, even if we don't live long enough to learn the status of the Riemann and Goldbach hypotheses, of twin primes or Mersenne primes, or of odd perfect numbers. On the other hand, "unsolved" problems may not be unsolved at all, or than was at first thought |
Beschreibung: | 1 Online-Ressource (XVI, 287 p) |
ISBN: | 9781489935854 9781489935878 |
ISSN: | 0941-3502 |
DOI: | 10.1007/978-1-4899-3585-4 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042421786 | ||
003 | DE-604 | ||
005 | 20200310 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1994 |||| o||u| ||||||eng d | ||
020 | |a 9781489935854 |c Online |9 978-1-4899-3585-4 | ||
020 | |a 9781489935878 |c Print |9 978-1-4899-3587-8 | ||
024 | 7 | |a 10.1007/978-1-4899-3585-4 |2 doi | |
035 | |a (OCoLC)859346404 | ||
035 | |a (DE-599)BVBBV042421786 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 512.7 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Guy, Richard K. |d 1916-2020 |e Verfasser |0 (DE-588)124655254 |4 aut | |
245 | 1 | 0 | |a Unsolved Problems in Number Theory |c by Richard K. Guy |
250 | |a Second Edition | ||
264 | 1 | |a New York, NY |b Springer New York |c 1994 | |
300 | |a 1 Online-Ressource (XVI, 287 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Problem Books in Mathematics, Unsolved Problems in Intuitive Mathematics |v 1 |x 0941-3502 | |
500 | |a To many laymen, mathematicians appear to be problem solvers, people who do "hard sums". Even inside the profession we dassify ouselves as either theorists or problem solvers. Mathematics is kept alive, much more than by the activities of either dass, by the appearance of a succession of unsolved problems, both from within mathematics itself and from the increasing number of disciplines where it is applied. Mathematics often owes more to those who ask questions than to those who answer them. The solution of a problem may stifte interest in the area around it. But "Fermat 's Last Theorem", because it is not yet a theorem, has generated a great deal of "good" mathematics, whether goodness is judged by beauty, by depth or by applicability. To pose good unsolved problems is a difficult art. The balance between triviality and hopeless unsolvability is delicate. There are many simply stated problems which experts tell us are unlikely to be solved in the next generation. But we have seen the Four Color Conjecture settled, even if we don't live long enough to learn the status of the Riemann and Goldbach hypotheses, of twin primes or Mersenne primes, or of odd perfect numbers. On the other hand, "unsolved" problems may not be unsolved at all, or than was at first thought | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Number theory | |
650 | 4 | |a Number Theory | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Zahlentheorie |0 (DE-588)4067277-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Ungelöstes Problem |0 (DE-588)4186869-9 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4143389-0 |a Aufgabensammlung |2 gnd-content | |
689 | 0 | 0 | |a Zahlentheorie |0 (DE-588)4067277-3 |D s |
689 | 0 | 1 | |a Ungelöstes Problem |0 (DE-588)4186869-9 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4899-3585-4 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857203 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153095233470464 |
---|---|
any_adam_object | |
author | Guy, Richard K. 1916-2020 |
author_GND | (DE-588)124655254 |
author_facet | Guy, Richard K. 1916-2020 |
author_role | aut |
author_sort | Guy, Richard K. 1916-2020 |
author_variant | r k g rk rkg |
building | Verbundindex |
bvnumber | BV042421786 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)859346404 (DE-599)BVBBV042421786 |
dewey-full | 512.7 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.7 |
dewey-search | 512.7 |
dewey-sort | 3512.7 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4899-3585-4 |
edition | Second Edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03168nmm a2200517zcb4500</leader><controlfield tag="001">BV042421786</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200310 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1994 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781489935854</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4899-3585-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781489935878</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4899-3587-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4899-3585-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)859346404</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421786</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.7</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Guy, Richard K.</subfield><subfield code="d">1916-2020</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)124655254</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Unsolved Problems in Number Theory</subfield><subfield code="c">by Richard K. Guy</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second Edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1994</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVI, 287 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Problem Books in Mathematics, Unsolved Problems in Intuitive Mathematics</subfield><subfield code="v">1</subfield><subfield code="x">0941-3502</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">To many laymen, mathematicians appear to be problem solvers, people who do "hard sums". Even inside the profession we dassify ouselves as either theorists or problem solvers. Mathematics is kept alive, much more than by the activities of either dass, by the appearance of a succession of unsolved problems, both from within mathematics itself and from the increasing number of disciplines where it is applied. Mathematics often owes more to those who ask questions than to those who answer them. The solution of a problem may stifte interest in the area around it. But "Fermat 's Last Theorem", because it is not yet a theorem, has generated a great deal of "good" mathematics, whether goodness is judged by beauty, by depth or by applicability. To pose good unsolved problems is a difficult art. The balance between triviality and hopeless unsolvability is delicate. There are many simply stated problems which experts tell us are unlikely to be solved in the next generation. But we have seen the Four Color Conjecture settled, even if we don't live long enough to learn the status of the Riemann and Goldbach hypotheses, of twin primes or Mersenne primes, or of odd perfect numbers. On the other hand, "unsolved" problems may not be unsolved at all, or than was at first thought</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zahlentheorie</subfield><subfield code="0">(DE-588)4067277-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ungelöstes Problem</subfield><subfield code="0">(DE-588)4186869-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4143389-0</subfield><subfield code="a">Aufgabensammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Zahlentheorie</subfield><subfield code="0">(DE-588)4067277-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Ungelöstes Problem</subfield><subfield code="0">(DE-588)4186869-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4899-3585-4</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857203</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4143389-0 Aufgabensammlung gnd-content |
genre_facet | Aufgabensammlung |
id | DE-604.BV042421786 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:09Z |
institution | BVB |
isbn | 9781489935854 9781489935878 |
issn | 0941-3502 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857203 |
oclc_num | 859346404 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XVI, 287 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1994 |
publishDateSearch | 1994 |
publishDateSort | 1994 |
publisher | Springer New York |
record_format | marc |
series2 | Problem Books in Mathematics, Unsolved Problems in Intuitive Mathematics |
spelling | Guy, Richard K. 1916-2020 Verfasser (DE-588)124655254 aut Unsolved Problems in Number Theory by Richard K. Guy Second Edition New York, NY Springer New York 1994 1 Online-Ressource (XVI, 287 p) txt rdacontent c rdamedia cr rdacarrier Problem Books in Mathematics, Unsolved Problems in Intuitive Mathematics 1 0941-3502 To many laymen, mathematicians appear to be problem solvers, people who do "hard sums". Even inside the profession we dassify ouselves as either theorists or problem solvers. Mathematics is kept alive, much more than by the activities of either dass, by the appearance of a succession of unsolved problems, both from within mathematics itself and from the increasing number of disciplines where it is applied. Mathematics often owes more to those who ask questions than to those who answer them. The solution of a problem may stifte interest in the area around it. But "Fermat 's Last Theorem", because it is not yet a theorem, has generated a great deal of "good" mathematics, whether goodness is judged by beauty, by depth or by applicability. To pose good unsolved problems is a difficult art. The balance between triviality and hopeless unsolvability is delicate. There are many simply stated problems which experts tell us are unlikely to be solved in the next generation. But we have seen the Four Color Conjecture settled, even if we don't live long enough to learn the status of the Riemann and Goldbach hypotheses, of twin primes or Mersenne primes, or of odd perfect numbers. On the other hand, "unsolved" problems may not be unsolved at all, or than was at first thought Mathematics Number theory Number Theory Mathematik Zahlentheorie (DE-588)4067277-3 gnd rswk-swf Ungelöstes Problem (DE-588)4186869-9 gnd rswk-swf 1\p (DE-588)4143389-0 Aufgabensammlung gnd-content Zahlentheorie (DE-588)4067277-3 s Ungelöstes Problem (DE-588)4186869-9 s 2\p DE-604 https://doi.org/10.1007/978-1-4899-3585-4 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Guy, Richard K. 1916-2020 Unsolved Problems in Number Theory Mathematics Number theory Number Theory Mathematik Zahlentheorie (DE-588)4067277-3 gnd Ungelöstes Problem (DE-588)4186869-9 gnd |
subject_GND | (DE-588)4067277-3 (DE-588)4186869-9 (DE-588)4143389-0 |
title | Unsolved Problems in Number Theory |
title_auth | Unsolved Problems in Number Theory |
title_exact_search | Unsolved Problems in Number Theory |
title_full | Unsolved Problems in Number Theory by Richard K. Guy |
title_fullStr | Unsolved Problems in Number Theory by Richard K. Guy |
title_full_unstemmed | Unsolved Problems in Number Theory by Richard K. Guy |
title_short | Unsolved Problems in Number Theory |
title_sort | unsolved problems in number theory |
topic | Mathematics Number theory Number Theory Mathematik Zahlentheorie (DE-588)4067277-3 gnd Ungelöstes Problem (DE-588)4186869-9 gnd |
topic_facet | Mathematics Number theory Number Theory Mathematik Zahlentheorie Ungelöstes Problem Aufgabensammlung |
url | https://doi.org/10.1007/978-1-4899-3585-4 |
work_keys_str_mv | AT guyrichardk unsolvedproblemsinnumbertheory |