Sets, Functions and Logic: Basic concepts of university mathematics
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Springer US
1981
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The purpose of this book is to provide the student beginning undergraduate mathematics with a solid foundation in the basic logical concepts necessary for most of the subjects encountered in a university mathematics course. The main distinction between most school mathematics and university mathematics lies in the degree of rigour demanded at university level. In general, the new student has no experience of wholly rigorous definitions and proofs, with the result that, although competent to handle quite difficult problems in, say, the differential calculus, he/she is totally lost when presented with a rigorous definition oflimits and derivatives. In effect, this means that in the first few weeks at university the student needs to master what is virtually an entire new language {'the language of mathematics'} and to adopt an entirely new mode ofthinking. Needless to say, only the very ablest students come through this process without a great deal of difficulty |
Beschreibung: | 1 Online-Ressource (IX, 90 p) |
ISBN: | 9781489929679 9780412226601 |
DOI: | 10.1007/978-1-4899-2967-9 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042421774 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1981 |||| o||u| ||||||eng d | ||
020 | |a 9781489929679 |c Online |9 978-1-4899-2967-9 | ||
020 | |a 9780412226601 |c Print |9 978-0-412-22660-1 | ||
024 | 7 | |a 10.1007/978-1-4899-2967-9 |2 doi | |
035 | |a (OCoLC)859014108 | ||
035 | |a (DE-599)BVBBV042421774 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515.7 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Devlin, Keith J. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Sets, Functions and Logic |b Basic concepts of university mathematics |c by Keith J. Devlin |
264 | 1 | |a Boston, MA |b Springer US |c 1981 | |
300 | |a 1 Online-Ressource (IX, 90 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a The purpose of this book is to provide the student beginning undergraduate mathematics with a solid foundation in the basic logical concepts necessary for most of the subjects encountered in a university mathematics course. The main distinction between most school mathematics and university mathematics lies in the degree of rigour demanded at university level. In general, the new student has no experience of wholly rigorous definitions and proofs, with the result that, although competent to handle quite difficult problems in, say, the differential calculus, he/she is totally lost when presented with a rigorous definition oflimits and derivatives. In effect, this means that in the first few weeks at university the student needs to master what is virtually an entire new language {'the language of mathematics'} and to adopt an entirely new mode ofthinking. Needless to say, only the very ablest students come through this process without a great deal of difficulty | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Functional analysis | |
650 | 4 | |a Functional Analysis | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Mengenlehre |0 (DE-588)4074715-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Zahlentheorie |0 (DE-588)4067277-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Mengenlehre |0 (DE-588)4074715-3 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Zahlentheorie |0 (DE-588)4067277-3 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4899-2967-9 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857191 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153095219838976 |
---|---|
any_adam_object | |
author | Devlin, Keith J. |
author_facet | Devlin, Keith J. |
author_role | aut |
author_sort | Devlin, Keith J. |
author_variant | k j d kj kjd |
building | Verbundindex |
bvnumber | BV042421774 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)859014108 (DE-599)BVBBV042421774 |
dewey-full | 515.7 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.7 |
dewey-search | 515.7 |
dewey-sort | 3515.7 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4899-2967-9 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02675nmm a2200493zc 4500</leader><controlfield tag="001">BV042421774</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1981 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781489929679</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4899-2967-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780412226601</subfield><subfield code="c">Print</subfield><subfield code="9">978-0-412-22660-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4899-2967-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)859014108</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421774</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.7</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Devlin, Keith J.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Sets, Functions and Logic</subfield><subfield code="b">Basic concepts of university mathematics</subfield><subfield code="c">by Keith J. Devlin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Springer US</subfield><subfield code="c">1981</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (IX, 90 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The purpose of this book is to provide the student beginning undergraduate mathematics with a solid foundation in the basic logical concepts necessary for most of the subjects encountered in a university mathematics course. The main distinction between most school mathematics and university mathematics lies in the degree of rigour demanded at university level. In general, the new student has no experience of wholly rigorous definitions and proofs, with the result that, although competent to handle quite difficult problems in, say, the differential calculus, he/she is totally lost when presented with a rigorous definition oflimits and derivatives. In effect, this means that in the first few weeks at university the student needs to master what is virtually an entire new language {'the language of mathematics'} and to adopt an entirely new mode ofthinking. Needless to say, only the very ablest students come through this process without a great deal of difficulty</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mengenlehre</subfield><subfield code="0">(DE-588)4074715-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zahlentheorie</subfield><subfield code="0">(DE-588)4067277-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mengenlehre</subfield><subfield code="0">(DE-588)4074715-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Zahlentheorie</subfield><subfield code="0">(DE-588)4067277-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4899-2967-9</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857191</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042421774 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:09Z |
institution | BVB |
isbn | 9781489929679 9780412226601 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857191 |
oclc_num | 859014108 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (IX, 90 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1981 |
publishDateSearch | 1981 |
publishDateSort | 1981 |
publisher | Springer US |
record_format | marc |
spelling | Devlin, Keith J. Verfasser aut Sets, Functions and Logic Basic concepts of university mathematics by Keith J. Devlin Boston, MA Springer US 1981 1 Online-Ressource (IX, 90 p) txt rdacontent c rdamedia cr rdacarrier The purpose of this book is to provide the student beginning undergraduate mathematics with a solid foundation in the basic logical concepts necessary for most of the subjects encountered in a university mathematics course. The main distinction between most school mathematics and university mathematics lies in the degree of rigour demanded at university level. In general, the new student has no experience of wholly rigorous definitions and proofs, with the result that, although competent to handle quite difficult problems in, say, the differential calculus, he/she is totally lost when presented with a rigorous definition oflimits and derivatives. In effect, this means that in the first few weeks at university the student needs to master what is virtually an entire new language {'the language of mathematics'} and to adopt an entirely new mode ofthinking. Needless to say, only the very ablest students come through this process without a great deal of difficulty Mathematics Functional analysis Functional Analysis Mathematik Mengenlehre (DE-588)4074715-3 gnd rswk-swf Zahlentheorie (DE-588)4067277-3 gnd rswk-swf Mengenlehre (DE-588)4074715-3 s 1\p DE-604 Zahlentheorie (DE-588)4067277-3 s 2\p DE-604 https://doi.org/10.1007/978-1-4899-2967-9 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Devlin, Keith J. Sets, Functions and Logic Basic concepts of university mathematics Mathematics Functional analysis Functional Analysis Mathematik Mengenlehre (DE-588)4074715-3 gnd Zahlentheorie (DE-588)4067277-3 gnd |
subject_GND | (DE-588)4074715-3 (DE-588)4067277-3 |
title | Sets, Functions and Logic Basic concepts of university mathematics |
title_auth | Sets, Functions and Logic Basic concepts of university mathematics |
title_exact_search | Sets, Functions and Logic Basic concepts of university mathematics |
title_full | Sets, Functions and Logic Basic concepts of university mathematics by Keith J. Devlin |
title_fullStr | Sets, Functions and Logic Basic concepts of university mathematics by Keith J. Devlin |
title_full_unstemmed | Sets, Functions and Logic Basic concepts of university mathematics by Keith J. Devlin |
title_short | Sets, Functions and Logic |
title_sort | sets functions and logic basic concepts of university mathematics |
title_sub | Basic concepts of university mathematics |
topic | Mathematics Functional analysis Functional Analysis Mathematik Mengenlehre (DE-588)4074715-3 gnd Zahlentheorie (DE-588)4067277-3 gnd |
topic_facet | Mathematics Functional analysis Functional Analysis Mathematik Mengenlehre Zahlentheorie |
url | https://doi.org/10.1007/978-1-4899-2967-9 |
work_keys_str_mv | AT devlinkeithj setsfunctionsandlogicbasicconceptsofuniversitymathematics |