Percolation Theory for Mathematicians:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Birkhäuser Boston
1982
|
Schriftenreihe: | Progress in Probability and Statistics
2 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Quite apart from the fact that percolation theory had its orlgln in an honest applied problem (see Hammersley and Welsh (1980)), it is a source of fascinating problems of the best kind a mathematician can wish for: problems which are easy to state with a minimum of preparation, but whose solutions are (apparently) difficult and require new methods. At the same time many of the problems are of interest to or proposed by statistical physicists and not dreamt up merely to demons~te ingenuity. Progress in the field has been slow. Relatively few results have been established rigorously, despite the rapidly growing literature with variations and extensions of the basic model, conjectures, plausibility arguments and results of simulations. It is my aim to treat here some basic results with rigorous proofs. This is in the first place a research monograph, but there are few prerequisites; one term of any standard graduate course in probability should be more than enough. Much of the material is quite recent or new, and many of the proofs are still clumsy. Especially the attempt to give proofs valid for as many graphs as possible led to more complications than expected. I hope that the Applications and Examples provide justifi cation for going to this level of generality |
Beschreibung: | 1 Online-Ressource (VIII, 423 p) |
ISBN: | 9781489927309 9780817631079 |
DOI: | 10.1007/978-1-4899-2730-9 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042421766 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1982 |||| o||u| ||||||eng d | ||
020 | |a 9781489927309 |c Online |9 978-1-4899-2730-9 | ||
020 | |a 9780817631079 |c Print |9 978-0-8176-3107-9 | ||
024 | 7 | |a 10.1007/978-1-4899-2730-9 |2 doi | |
035 | |a (OCoLC)859356086 | ||
035 | |a (DE-599)BVBBV042421766 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 519.2 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Kesten, Harry |e Verfasser |4 aut | |
245 | 1 | 0 | |a Percolation Theory for Mathematicians |c by Harry Kesten |
264 | 1 | |a Boston, MA |b Birkhäuser Boston |c 1982 | |
300 | |a 1 Online-Ressource (VIII, 423 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Progress in Probability and Statistics |v 2 | |
500 | |a Quite apart from the fact that percolation theory had its orlgln in an honest applied problem (see Hammersley and Welsh (1980)), it is a source of fascinating problems of the best kind a mathematician can wish for: problems which are easy to state with a minimum of preparation, but whose solutions are (apparently) difficult and require new methods. At the same time many of the problems are of interest to or proposed by statistical physicists and not dreamt up merely to demons~te ingenuity. Progress in the field has been slow. Relatively few results have been established rigorously, despite the rapidly growing literature with variations and extensions of the basic model, conjectures, plausibility arguments and results of simulations. It is my aim to treat here some basic results with rigorous proofs. This is in the first place a research monograph, but there are few prerequisites; one term of any standard graduate course in probability should be more than enough. Much of the material is quite recent or new, and many of the proofs are still clumsy. Especially the attempt to give proofs valid for as many graphs as possible led to more complications than expected. I hope that the Applications and Examples provide justifi cation for going to this level of generality | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Distribution (Probability theory) | |
650 | 4 | |a Probability Theory and Stochastic Processes | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Perkolationstheorie |0 (DE-588)4323583-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematische Methode |0 (DE-588)4155620-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Perkolation |0 (DE-588)4115530-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Statistische Physik |0 (DE-588)4057000-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Perkolation |0 (DE-588)4115530-0 |D s |
689 | 0 | 1 | |a Statistische Physik |0 (DE-588)4057000-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Perkolation |0 (DE-588)4115530-0 |D s |
689 | 1 | 1 | |a Mathematische Methode |0 (DE-588)4155620-3 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Perkolationstheorie |0 (DE-588)4323583-9 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4899-2730-9 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857183 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153095210401792 |
---|---|
any_adam_object | |
author | Kesten, Harry |
author_facet | Kesten, Harry |
author_role | aut |
author_sort | Kesten, Harry |
author_variant | h k hk |
building | Verbundindex |
bvnumber | BV042421766 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)859356086 (DE-599)BVBBV042421766 |
dewey-full | 519.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.2 |
dewey-search | 519.2 |
dewey-sort | 3519.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4899-2730-9 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03491nmm a2200589zcb4500</leader><controlfield tag="001">BV042421766</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1982 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781489927309</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4899-2730-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780817631079</subfield><subfield code="c">Print</subfield><subfield code="9">978-0-8176-3107-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4899-2730-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)859356086</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421766</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kesten, Harry</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Percolation Theory for Mathematicians</subfield><subfield code="c">by Harry Kesten</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Birkhäuser Boston</subfield><subfield code="c">1982</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VIII, 423 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Progress in Probability and Statistics</subfield><subfield code="v">2</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Quite apart from the fact that percolation theory had its orlgln in an honest applied problem (see Hammersley and Welsh (1980)), it is a source of fascinating problems of the best kind a mathematician can wish for: problems which are easy to state with a minimum of preparation, but whose solutions are (apparently) difficult and require new methods. At the same time many of the problems are of interest to or proposed by statistical physicists and not dreamt up merely to demons~te ingenuity. Progress in the field has been slow. Relatively few results have been established rigorously, despite the rapidly growing literature with variations and extensions of the basic model, conjectures, plausibility arguments and results of simulations. It is my aim to treat here some basic results with rigorous proofs. This is in the first place a research monograph, but there are few prerequisites; one term of any standard graduate course in probability should be more than enough. Much of the material is quite recent or new, and many of the proofs are still clumsy. Especially the attempt to give proofs valid for as many graphs as possible led to more complications than expected. I hope that the Applications and Examples provide justifi cation for going to this level of generality</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distribution (Probability theory)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability Theory and Stochastic Processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Perkolationstheorie</subfield><subfield code="0">(DE-588)4323583-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Methode</subfield><subfield code="0">(DE-588)4155620-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Perkolation</subfield><subfield code="0">(DE-588)4115530-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Statistische Physik</subfield><subfield code="0">(DE-588)4057000-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Perkolation</subfield><subfield code="0">(DE-588)4115530-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Statistische Physik</subfield><subfield code="0">(DE-588)4057000-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Perkolation</subfield><subfield code="0">(DE-588)4115530-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Mathematische Methode</subfield><subfield code="0">(DE-588)4155620-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Perkolationstheorie</subfield><subfield code="0">(DE-588)4323583-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4899-2730-9</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857183</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042421766 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:09Z |
institution | BVB |
isbn | 9781489927309 9780817631079 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857183 |
oclc_num | 859356086 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (VIII, 423 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1982 |
publishDateSearch | 1982 |
publishDateSort | 1982 |
publisher | Birkhäuser Boston |
record_format | marc |
series2 | Progress in Probability and Statistics |
spelling | Kesten, Harry Verfasser aut Percolation Theory for Mathematicians by Harry Kesten Boston, MA Birkhäuser Boston 1982 1 Online-Ressource (VIII, 423 p) txt rdacontent c rdamedia cr rdacarrier Progress in Probability and Statistics 2 Quite apart from the fact that percolation theory had its orlgln in an honest applied problem (see Hammersley and Welsh (1980)), it is a source of fascinating problems of the best kind a mathematician can wish for: problems which are easy to state with a minimum of preparation, but whose solutions are (apparently) difficult and require new methods. At the same time many of the problems are of interest to or proposed by statistical physicists and not dreamt up merely to demons~te ingenuity. Progress in the field has been slow. Relatively few results have been established rigorously, despite the rapidly growing literature with variations and extensions of the basic model, conjectures, plausibility arguments and results of simulations. It is my aim to treat here some basic results with rigorous proofs. This is in the first place a research monograph, but there are few prerequisites; one term of any standard graduate course in probability should be more than enough. Much of the material is quite recent or new, and many of the proofs are still clumsy. Especially the attempt to give proofs valid for as many graphs as possible led to more complications than expected. I hope that the Applications and Examples provide justifi cation for going to this level of generality Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Mathematik Perkolationstheorie (DE-588)4323583-9 gnd rswk-swf Mathematische Methode (DE-588)4155620-3 gnd rswk-swf Perkolation (DE-588)4115530-0 gnd rswk-swf Statistische Physik (DE-588)4057000-9 gnd rswk-swf Perkolation (DE-588)4115530-0 s Statistische Physik (DE-588)4057000-9 s 1\p DE-604 Mathematische Methode (DE-588)4155620-3 s 2\p DE-604 Perkolationstheorie (DE-588)4323583-9 s 3\p DE-604 https://doi.org/10.1007/978-1-4899-2730-9 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Kesten, Harry Percolation Theory for Mathematicians Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Mathematik Perkolationstheorie (DE-588)4323583-9 gnd Mathematische Methode (DE-588)4155620-3 gnd Perkolation (DE-588)4115530-0 gnd Statistische Physik (DE-588)4057000-9 gnd |
subject_GND | (DE-588)4323583-9 (DE-588)4155620-3 (DE-588)4115530-0 (DE-588)4057000-9 |
title | Percolation Theory for Mathematicians |
title_auth | Percolation Theory for Mathematicians |
title_exact_search | Percolation Theory for Mathematicians |
title_full | Percolation Theory for Mathematicians by Harry Kesten |
title_fullStr | Percolation Theory for Mathematicians by Harry Kesten |
title_full_unstemmed | Percolation Theory for Mathematicians by Harry Kesten |
title_short | Percolation Theory for Mathematicians |
title_sort | percolation theory for mathematicians |
topic | Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Mathematik Perkolationstheorie (DE-588)4323583-9 gnd Mathematische Methode (DE-588)4155620-3 gnd Perkolation (DE-588)4115530-0 gnd Statistische Physik (DE-588)4057000-9 gnd |
topic_facet | Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Mathematik Perkolationstheorie Mathematische Methode Perkolation Statistische Physik |
url | https://doi.org/10.1007/978-1-4899-2730-9 |
work_keys_str_mv | AT kestenharry percolationtheoryformathematicians |