Mathematics and Its History:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1989
|
Schriftenreihe: | Undergraduate Texts in Mathematics
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | One of the disappointments experienced by most mathematics students is that they never get a course in mathematics. They get courses in calculus, algebra, topology, and so on, but the division of labor in teaching seems to prevent these different topics from being combined into a whole. In fact, some of the most important and natural questions are stifled because they fall on the wrong side of topic boundary lines. Algebraists do not discuss the fundamental theorem of algebra because "that's analysis" and analysts do not discuss Riemann surfaces because "that's topology," for example. Thus if students are to feel they really know mathematics by the time they graduate, there is a need to unify the subject. This book aims to give a unified view of undergraduate mathematics by approaching the subject through its history. Since readers should have had some mathematical experience, certain basics are assumed and the mathematics is not developed as formally as in a standard text. On the other hand, the mathematics is pursued more thoroughly than in most general histories of mathematics, as mathematics is our main goal and history only the means of approaching it. Readers are assumed to know basic calculus, algebra, and geometry, to understand the language of set theory, and to have met some more advanced topics such as group theory, topology, and differential equations |
Beschreibung: | 1 Online-Ressource (X, 371 p) |
ISBN: | 9781489900074 9781489900098 |
ISSN: | 0172-6056 |
DOI: | 10.1007/978-1-4899-0007-4 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042421733 | ||
003 | DE-604 | ||
005 | 20171215 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1989 |||| o||u| ||||||eng d | ||
020 | |a 9781489900074 |c Online |9 978-1-4899-0007-4 | ||
020 | |a 9781489900098 |c Print |9 978-1-4899-0009-8 | ||
024 | 7 | |a 10.1007/978-1-4899-0007-4 |2 doi | |
035 | |a (OCoLC)879623995 | ||
035 | |a (DE-599)BVBBV042421733 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 510.9 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Stillwell, John |e Verfasser |4 aut | |
245 | 1 | 0 | |a Mathematics and Its History |c by John Stillwell |
264 | 1 | |a New York, NY |b Springer New York |c 1989 | |
300 | |a 1 Online-Ressource (X, 371 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Undergraduate Texts in Mathematics |x 0172-6056 | |
500 | |a One of the disappointments experienced by most mathematics students is that they never get a course in mathematics. They get courses in calculus, algebra, topology, and so on, but the division of labor in teaching seems to prevent these different topics from being combined into a whole. In fact, some of the most important and natural questions are stifled because they fall on the wrong side of topic boundary lines. Algebraists do not discuss the fundamental theorem of algebra because "that's analysis" and analysts do not discuss Riemann surfaces because "that's topology," for example. Thus if students are to feel they really know mathematics by the time they graduate, there is a need to unify the subject. This book aims to give a unified view of undergraduate mathematics by approaching the subject through its history. Since readers should have had some mathematical experience, certain basics are assumed and the mathematics is not developed as formally as in a standard text. On the other hand, the mathematics is pursued more thoroughly than in most general histories of mathematics, as mathematics is our main goal and history only the means of approaching it. Readers are assumed to know basic calculus, algebra, and geometry, to understand the language of set theory, and to have met some more advanced topics such as group theory, topology, and differential equations | ||
648 | 7 | |a Geschichte |2 gnd |9 rswk-swf | |
650 | 4 | |a Mathematics | |
650 | 4 | |a Geometry | |
650 | 4 | |a History of Mathematical Sciences | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Mathematik |0 (DE-588)4037944-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Geschichte |0 (DE-588)4020517-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Mathematik |0 (DE-588)4037944-9 |D s |
689 | 0 | 1 | |a Geschichte |0 (DE-588)4020517-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Mathematik |0 (DE-588)4037944-9 |D s |
689 | 1 | 1 | |a Geschichte |A z |
689 | 1 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4899-0007-4 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857150 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153095124418560 |
---|---|
any_adam_object | |
author | Stillwell, John |
author_facet | Stillwell, John |
author_role | aut |
author_sort | Stillwell, John |
author_variant | j s js |
building | Verbundindex |
bvnumber | BV042421733 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)879623995 (DE-599)BVBBV042421733 |
dewey-full | 510.9 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510.9 |
dewey-search | 510.9 |
dewey-sort | 3510.9 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4899-0007-4 |
era | Geschichte gnd |
era_facet | Geschichte |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03230nmm a2200541zc 4500</leader><controlfield tag="001">BV042421733</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20171215 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1989 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781489900074</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4899-0007-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781489900098</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4899-0009-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4899-0007-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)879623995</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421733</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510.9</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Stillwell, John</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mathematics and Its History</subfield><subfield code="c">by John Stillwell</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1989</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 371 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Undergraduate Texts in Mathematics</subfield><subfield code="x">0172-6056</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">One of the disappointments experienced by most mathematics students is that they never get a course in mathematics. They get courses in calculus, algebra, topology, and so on, but the division of labor in teaching seems to prevent these different topics from being combined into a whole. In fact, some of the most important and natural questions are stifled because they fall on the wrong side of topic boundary lines. Algebraists do not discuss the fundamental theorem of algebra because "that's analysis" and analysts do not discuss Riemann surfaces because "that's topology," for example. Thus if students are to feel they really know mathematics by the time they graduate, there is a need to unify the subject. This book aims to give a unified view of undergraduate mathematics by approaching the subject through its history. Since readers should have had some mathematical experience, certain basics are assumed and the mathematics is not developed as formally as in a standard text. On the other hand, the mathematics is pursued more thoroughly than in most general histories of mathematics, as mathematics is our main goal and history only the means of approaching it. Readers are assumed to know basic calculus, algebra, and geometry, to understand the language of set theory, and to have met some more advanced topics such as group theory, topology, and differential equations</subfield></datafield><datafield tag="648" ind1=" " ind2="7"><subfield code="a">Geschichte</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">History of Mathematical Sciences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geschichte</subfield><subfield code="0">(DE-588)4020517-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Geschichte</subfield><subfield code="0">(DE-588)4020517-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Geschichte</subfield><subfield code="A">z</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4899-0007-4</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857150</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042421733 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:09Z |
institution | BVB |
isbn | 9781489900074 9781489900098 |
issn | 0172-6056 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857150 |
oclc_num | 879623995 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (X, 371 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1989 |
publishDateSearch | 1989 |
publishDateSort | 1989 |
publisher | Springer New York |
record_format | marc |
series2 | Undergraduate Texts in Mathematics |
spelling | Stillwell, John Verfasser aut Mathematics and Its History by John Stillwell New York, NY Springer New York 1989 1 Online-Ressource (X, 371 p) txt rdacontent c rdamedia cr rdacarrier Undergraduate Texts in Mathematics 0172-6056 One of the disappointments experienced by most mathematics students is that they never get a course in mathematics. They get courses in calculus, algebra, topology, and so on, but the division of labor in teaching seems to prevent these different topics from being combined into a whole. In fact, some of the most important and natural questions are stifled because they fall on the wrong side of topic boundary lines. Algebraists do not discuss the fundamental theorem of algebra because "that's analysis" and analysts do not discuss Riemann surfaces because "that's topology," for example. Thus if students are to feel they really know mathematics by the time they graduate, there is a need to unify the subject. This book aims to give a unified view of undergraduate mathematics by approaching the subject through its history. Since readers should have had some mathematical experience, certain basics are assumed and the mathematics is not developed as formally as in a standard text. On the other hand, the mathematics is pursued more thoroughly than in most general histories of mathematics, as mathematics is our main goal and history only the means of approaching it. Readers are assumed to know basic calculus, algebra, and geometry, to understand the language of set theory, and to have met some more advanced topics such as group theory, topology, and differential equations Geschichte gnd rswk-swf Mathematics Geometry History of Mathematical Sciences Mathematik Mathematik (DE-588)4037944-9 gnd rswk-swf Geschichte (DE-588)4020517-4 gnd rswk-swf Mathematik (DE-588)4037944-9 s Geschichte (DE-588)4020517-4 s 1\p DE-604 Geschichte z 2\p DE-604 https://doi.org/10.1007/978-1-4899-0007-4 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Stillwell, John Mathematics and Its History Mathematics Geometry History of Mathematical Sciences Mathematik Mathematik (DE-588)4037944-9 gnd Geschichte (DE-588)4020517-4 gnd |
subject_GND | (DE-588)4037944-9 (DE-588)4020517-4 |
title | Mathematics and Its History |
title_auth | Mathematics and Its History |
title_exact_search | Mathematics and Its History |
title_full | Mathematics and Its History by John Stillwell |
title_fullStr | Mathematics and Its History by John Stillwell |
title_full_unstemmed | Mathematics and Its History by John Stillwell |
title_short | Mathematics and Its History |
title_sort | mathematics and its history |
topic | Mathematics Geometry History of Mathematical Sciences Mathematik Mathematik (DE-588)4037944-9 gnd Geschichte (DE-588)4020517-4 gnd |
topic_facet | Mathematics Geometry History of Mathematical Sciences Mathematik Geschichte |
url | https://doi.org/10.1007/978-1-4899-0007-4 |
work_keys_str_mv | AT stillwelljohn mathematicsanditshistory |