Complex Analysis and Geometry:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Springer US
1993
|
Schriftenreihe: | The University Series in Mathematics
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | When we studied complex variables in the late 1960s, modem geometry on the complex fie1d and complex function theory were identified in teaching and research as several complex variables. A beginner in the field at that time would have the experience of jumping from the sheaf-theoretical methods employed in the theory of analytic spaces to the P.D.E. methods of the ä problem, with the c1ear understanding that the phenomena lying behind such different methods and problems were the same. A few years later, new important discoveries made c1ear that complex differential geometry was also in the same company. Looking at the historical development of the subject in the first half of the twentieth century shows this was not astonishing. The origin of the theory of functions of several complex variables was tardier than the familiar of analytic functions of one complex variable. The first comprehensive theory textbook by Behnke and Thullen, in the 1930s, expounded the foundations ofthe general theory as set up by Weierstrass, Cousin, Hartogs, and Poincare and c1early put in evidence that the difficulties were all but solved. In aseries of papers from 1936 to 1953, Oka introduced a brilliant collection of new ideas and systematically eliminated aU difficulties. Oka's work had in itse1f a fruitful seed and contained the premises for the opening of wider horizons |
Beschreibung: | 1 Online-Ressource (XV, 412 p) |
ISBN: | 9781475797718 9781475797732 |
DOI: | 10.1007/978-1-4757-9771-8 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042421729 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1993 |||| o||u| ||||||eng d | ||
020 | |a 9781475797718 |c Online |9 978-1-4757-9771-8 | ||
020 | |a 9781475797732 |c Print |9 978-1-4757-9773-2 | ||
024 | 7 | |a 10.1007/978-1-4757-9771-8 |2 doi | |
035 | |a (OCoLC)1184496980 | ||
035 | |a (DE-599)BVBBV042421729 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 510 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Ancona, Vincenzo |e Verfasser |4 aut | |
245 | 1 | 0 | |a Complex Analysis and Geometry |c edited by Vincenzo Ancona, Alessandro Silva |
264 | 1 | |a Boston, MA |b Springer US |c 1993 | |
300 | |a 1 Online-Ressource (XV, 412 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a The University Series in Mathematics | |
500 | |a When we studied complex variables in the late 1960s, modem geometry on the complex fie1d and complex function theory were identified in teaching and research as several complex variables. A beginner in the field at that time would have the experience of jumping from the sheaf-theoretical methods employed in the theory of analytic spaces to the P.D.E. methods of the ä problem, with the c1ear understanding that the phenomena lying behind such different methods and problems were the same. A few years later, new important discoveries made c1ear that complex differential geometry was also in the same company. Looking at the historical development of the subject in the first half of the twentieth century shows this was not astonishing. The origin of the theory of functions of several complex variables was tardier than the familiar of analytic functions of one complex variable. The first comprehensive theory textbook by Behnke and Thullen, in the 1930s, expounded the foundations ofthe general theory as set up by Weierstrass, Cousin, Hartogs, and Poincare and c1early put in evidence that the difficulties were all but solved. In aseries of papers from 1936 to 1953, Oka introduced a brilliant collection of new ideas and systematically eliminated aU difficulties. Oka's work had in itse1f a fruitful seed and contained the premises for the opening of wider horizons | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Geometry | |
650 | 4 | |a Mathematics, general | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Funktionentheorie |0 (DE-588)4018935-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mehrere komplexe Variable |0 (DE-588)4169285-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Differentialgeometrie |0 (DE-588)4012248-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algebraische Geometrie |0 (DE-588)4001161-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Geometrische Funktionentheorie |0 (DE-588)4156711-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mehrere Variable |0 (DE-588)4277015-4 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
655 | 7 | |8 2\p |0 (DE-588)1071861417 |a Konferenzschrift |y 1995 |z Trient |2 gnd-content | |
689 | 0 | 0 | |a Funktionentheorie |0 (DE-588)4018935-1 |D s |
689 | 0 | 1 | |a Mehrere Variable |0 (DE-588)4277015-4 |D s |
689 | 0 | |8 3\p |5 DE-604 | |
689 | 1 | 0 | |a Geometrische Funktionentheorie |0 (DE-588)4156711-0 |D s |
689 | 1 | 1 | |a Mehrere komplexe Variable |0 (DE-588)4169285-8 |D s |
689 | 1 | |8 4\p |5 DE-604 | |
689 | 2 | 0 | |a Algebraische Geometrie |0 (DE-588)4001161-6 |D s |
689 | 2 | |8 5\p |5 DE-604 | |
689 | 3 | 0 | |a Differentialgeometrie |0 (DE-588)4012248-7 |D s |
689 | 3 | |8 6\p |5 DE-604 | |
700 | 1 | |a Silva, Alessandro |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4757-9771-8 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857146 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 5\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 6\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153095112884224 |
---|---|
any_adam_object | |
author | Ancona, Vincenzo |
author_facet | Ancona, Vincenzo |
author_role | aut |
author_sort | Ancona, Vincenzo |
author_variant | v a va |
building | Verbundindex |
bvnumber | BV042421729 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184496980 (DE-599)BVBBV042421729 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4757-9771-8 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04286nmm a2200709zc 4500</leader><controlfield tag="001">BV042421729</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1993 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781475797718</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4757-9771-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781475797732</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4757-9773-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4757-9771-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184496980</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421729</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ancona, Vincenzo</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Complex Analysis and Geometry</subfield><subfield code="c">edited by Vincenzo Ancona, Alessandro Silva</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Springer US</subfield><subfield code="c">1993</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XV, 412 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">The University Series in Mathematics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">When we studied complex variables in the late 1960s, modem geometry on the complex fie1d and complex function theory were identified in teaching and research as several complex variables. A beginner in the field at that time would have the experience of jumping from the sheaf-theoretical methods employed in the theory of analytic spaces to the P.D.E. methods of the ä problem, with the c1ear understanding that the phenomena lying behind such different methods and problems were the same. A few years later, new important discoveries made c1ear that complex differential geometry was also in the same company. Looking at the historical development of the subject in the first half of the twentieth century shows this was not astonishing. The origin of the theory of functions of several complex variables was tardier than the familiar of analytic functions of one complex variable. The first comprehensive theory textbook by Behnke and Thullen, in the 1930s, expounded the foundations ofthe general theory as set up by Weierstrass, Cousin, Hartogs, and Poincare and c1early put in evidence that the difficulties were all but solved. In aseries of papers from 1936 to 1953, Oka introduced a brilliant collection of new ideas and systematically eliminated aU difficulties. Oka's work had in itse1f a fruitful seed and contained the premises for the opening of wider horizons</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktionentheorie</subfield><subfield code="0">(DE-588)4018935-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mehrere komplexe Variable</subfield><subfield code="0">(DE-588)4169285-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialgeometrie</subfield><subfield code="0">(DE-588)4012248-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Geometrie</subfield><subfield code="0">(DE-588)4001161-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometrische Funktionentheorie</subfield><subfield code="0">(DE-588)4156711-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mehrere Variable</subfield><subfield code="0">(DE-588)4277015-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">2\p</subfield><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="y">1995</subfield><subfield code="z">Trient</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Funktionentheorie</subfield><subfield code="0">(DE-588)4018935-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mehrere Variable</subfield><subfield code="0">(DE-588)4277015-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Geometrische Funktionentheorie</subfield><subfield code="0">(DE-588)4156711-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Mehrere komplexe Variable</subfield><subfield code="0">(DE-588)4169285-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Algebraische Geometrie</subfield><subfield code="0">(DE-588)4001161-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">5\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Differentialgeometrie</subfield><subfield code="0">(DE-588)4012248-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">6\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Silva, Alessandro</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4757-9771-8</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857146</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">5\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">6\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4143413-4 Aufsatzsammlung gnd-content 2\p (DE-588)1071861417 Konferenzschrift 1995 Trient gnd-content |
genre_facet | Aufsatzsammlung Konferenzschrift 1995 Trient |
id | DE-604.BV042421729 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:09Z |
institution | BVB |
isbn | 9781475797718 9781475797732 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857146 |
oclc_num | 1184496980 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XV, 412 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1993 |
publishDateSearch | 1993 |
publishDateSort | 1993 |
publisher | Springer US |
record_format | marc |
series2 | The University Series in Mathematics |
spelling | Ancona, Vincenzo Verfasser aut Complex Analysis and Geometry edited by Vincenzo Ancona, Alessandro Silva Boston, MA Springer US 1993 1 Online-Ressource (XV, 412 p) txt rdacontent c rdamedia cr rdacarrier The University Series in Mathematics When we studied complex variables in the late 1960s, modem geometry on the complex fie1d and complex function theory were identified in teaching and research as several complex variables. A beginner in the field at that time would have the experience of jumping from the sheaf-theoretical methods employed in the theory of analytic spaces to the P.D.E. methods of the ä problem, with the c1ear understanding that the phenomena lying behind such different methods and problems were the same. A few years later, new important discoveries made c1ear that complex differential geometry was also in the same company. Looking at the historical development of the subject in the first half of the twentieth century shows this was not astonishing. The origin of the theory of functions of several complex variables was tardier than the familiar of analytic functions of one complex variable. The first comprehensive theory textbook by Behnke and Thullen, in the 1930s, expounded the foundations ofthe general theory as set up by Weierstrass, Cousin, Hartogs, and Poincare and c1early put in evidence that the difficulties were all but solved. In aseries of papers from 1936 to 1953, Oka introduced a brilliant collection of new ideas and systematically eliminated aU difficulties. Oka's work had in itse1f a fruitful seed and contained the premises for the opening of wider horizons Mathematics Geometry Mathematics, general Mathematik Funktionentheorie (DE-588)4018935-1 gnd rswk-swf Mehrere komplexe Variable (DE-588)4169285-8 gnd rswk-swf Differentialgeometrie (DE-588)4012248-7 gnd rswk-swf Algebraische Geometrie (DE-588)4001161-6 gnd rswk-swf Geometrische Funktionentheorie (DE-588)4156711-0 gnd rswk-swf Mehrere Variable (DE-588)4277015-4 gnd rswk-swf 1\p (DE-588)4143413-4 Aufsatzsammlung gnd-content 2\p (DE-588)1071861417 Konferenzschrift 1995 Trient gnd-content Funktionentheorie (DE-588)4018935-1 s Mehrere Variable (DE-588)4277015-4 s 3\p DE-604 Geometrische Funktionentheorie (DE-588)4156711-0 s Mehrere komplexe Variable (DE-588)4169285-8 s 4\p DE-604 Algebraische Geometrie (DE-588)4001161-6 s 5\p DE-604 Differentialgeometrie (DE-588)4012248-7 s 6\p DE-604 Silva, Alessandro Sonstige oth https://doi.org/10.1007/978-1-4757-9771-8 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 5\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 6\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Ancona, Vincenzo Complex Analysis and Geometry Mathematics Geometry Mathematics, general Mathematik Funktionentheorie (DE-588)4018935-1 gnd Mehrere komplexe Variable (DE-588)4169285-8 gnd Differentialgeometrie (DE-588)4012248-7 gnd Algebraische Geometrie (DE-588)4001161-6 gnd Geometrische Funktionentheorie (DE-588)4156711-0 gnd Mehrere Variable (DE-588)4277015-4 gnd |
subject_GND | (DE-588)4018935-1 (DE-588)4169285-8 (DE-588)4012248-7 (DE-588)4001161-6 (DE-588)4156711-0 (DE-588)4277015-4 (DE-588)4143413-4 (DE-588)1071861417 |
title | Complex Analysis and Geometry |
title_auth | Complex Analysis and Geometry |
title_exact_search | Complex Analysis and Geometry |
title_full | Complex Analysis and Geometry edited by Vincenzo Ancona, Alessandro Silva |
title_fullStr | Complex Analysis and Geometry edited by Vincenzo Ancona, Alessandro Silva |
title_full_unstemmed | Complex Analysis and Geometry edited by Vincenzo Ancona, Alessandro Silva |
title_short | Complex Analysis and Geometry |
title_sort | complex analysis and geometry |
topic | Mathematics Geometry Mathematics, general Mathematik Funktionentheorie (DE-588)4018935-1 gnd Mehrere komplexe Variable (DE-588)4169285-8 gnd Differentialgeometrie (DE-588)4012248-7 gnd Algebraische Geometrie (DE-588)4001161-6 gnd Geometrische Funktionentheorie (DE-588)4156711-0 gnd Mehrere Variable (DE-588)4277015-4 gnd |
topic_facet | Mathematics Geometry Mathematics, general Mathematik Funktionentheorie Mehrere komplexe Variable Differentialgeometrie Algebraische Geometrie Geometrische Funktionentheorie Mehrere Variable Aufsatzsammlung Konferenzschrift 1995 Trient |
url | https://doi.org/10.1007/978-1-4757-9771-8 |
work_keys_str_mv | AT anconavincenzo complexanalysisandgeometry AT silvaalessandro complexanalysisandgeometry |