Bayesian Forecasting and Dynamic Models:
Saved in:
Bibliographic Details
Main Author: West, Mike (Author)
Format: Electronic eBook
Language:English
Published: New York, NY Springer New York 1989
Series:Springer Series in Statistics
Subjects:
Online Access:Volltext
Item Description:In this book we are concerned with Bayesian learning and forecast­ ing in dynamic environments. We describe the structure and theory of classes of dynamic models, and their uses in Bayesian forecasting. The principles, models and methods of Bayesian forecasting have been developed extensively during the last twenty years. This devel­ opment has involved thorough investigation of mathematical and sta­ tistical aspects of forecasting models and related techniques. With this has come experience with application in a variety of areas in commercial and industrial, scientific and socio-economic fields. In­ deed much of the technical development has been driven by the needs of forecasting practitioners. As a result, there now exists a relatively complete statistical and mathematical framework, although much of this is either not properly documented or not easily accessible. Our primary goals in writing this book have been to present our view of this approach to modelling and forecasting, and to provide a rea­ sonably complete text for advanced university students and research workers. The text is primarily intended for advanced undergraduate and postgraduate students in statistics and mathematics. In line with this objective we present thorough discussion of mathematical and statistical features of Bayesian analyses of dynamic models, with illustrations, examples and exercises in each Chapter
Physical Description:1 Online-Ressource (XXI, 704 p)
ISBN:9781475793659
9781475793673
ISSN:0172-7397
DOI:10.1007/978-1-4757-9365-9

There is no print copy available.

Interlibrary loan Place Request Caution: Not in THWS collection! Get full text