The symmetric group: representations, combinatorial algorithms, and symmetric functions
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York
Springer
[2001]
|
Ausgabe: | Second Edition |
Schriftenreihe: | Graduate texts in mathematics
203 |
Schlagworte: | |
Online-Zugang: | UBW01 Volltext |
Beschreibung: | I have been very gratified by the response to the first edition, which has resulted in it being sold out. This put some pressure on me to come out with a second edition and now, finally, here it is. The original text has stayed much the same, the major change being in the treatment of the hook formula which is now based on the beautiful Novelli-Pak-Stoyanovskii bijection (NPS 97]. I have also added a chapter on applications of the material from the first edition. This includes Stanley's theory of differential posets (Stn 88, Stn 90] and Fomin's related concept of growths (Fom 86, Fom 94, Fom 95], which extends some of the combinatorics of Sn-representations. Next come a couple of sections showing how groups acting on posets give rise to interesting representations that can be used to prove unimodality results (Stn 82]. Finally, we discuss Stanley's symmetric function analogue of the chromatic polynomial of a graph (Stn 95, Stn ta]. I would like to thank all the people, too numerous to mention, who pointed out typos in the first edition. My computer has been severely reprimanded for making them. Thanks also go to Christian Krattenthaler, Tom Roby, and Richard Stanley, all of whom read portions of the new material and gave me their comments. Finally, I would like to give my heartfelt thanks to my editor at Springer, Ina Lindemann, who has been very supportive and helpful through various difficult times |
Beschreibung: | 1 Online-Ressource (XV, 238 Seiten) Illustrationen |
ISBN: | 9781475768046 |
DOI: | 10.1007/978-1-4757-6804-6 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042421707 | ||
003 | DE-604 | ||
005 | 20210526 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2001 |||| o||u| ||||||eng d | ||
020 | |a 9781475768046 |c Online |9 978-1-4757-6804-6 | ||
024 | 7 | |a 10.1007/978-1-4757-6804-6 |2 doi | |
035 | |a (ZDB-30-PQE)EBC3086359 | ||
035 | |a (OCoLC)863899668 | ||
035 | |a (DE-599)BVBBV042421707 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 |a DE-20 | ||
082 | 0 | |a 512.2 |2 23 | |
084 | |a SK 260 |0 (DE-625)143227: |2 rvk | ||
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Sagan, Bruce E. |d 1954- |e Verfasser |0 (DE-588)113115393 |4 aut | |
245 | 1 | 0 | |a The symmetric group |b representations, combinatorial algorithms, and symmetric functions |c Bruce E. Sagan |
250 | |a Second Edition | ||
264 | 1 | |a New York |b Springer |c [2001] | |
300 | |a 1 Online-Ressource (XV, 238 Seiten) |b Illustrationen | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Graduate texts in mathematics |v 203 | |
500 | |a I have been very gratified by the response to the first edition, which has resulted in it being sold out. This put some pressure on me to come out with a second edition and now, finally, here it is. The original text has stayed much the same, the major change being in the treatment of the hook formula which is now based on the beautiful Novelli-Pak-Stoyanovskii bijection (NPS 97]. I have also added a chapter on applications of the material from the first edition. This includes Stanley's theory of differential posets (Stn 88, Stn 90] and Fomin's related concept of growths (Fom 86, Fom 94, Fom 95], which extends some of the combinatorics of Sn-representations. Next come a couple of sections showing how groups acting on posets give rise to interesting representations that can be used to prove unimodality results (Stn 82]. Finally, we discuss Stanley's symmetric function analogue of the chromatic polynomial of a graph (Stn 95, Stn ta]. I would like to thank all the people, too numerous to mention, who pointed out typos in the first edition. My computer has been severely reprimanded for making them. Thanks also go to Christian Krattenthaler, Tom Roby, and Richard Stanley, all of whom read portions of the new material and gave me their comments. Finally, I would like to give my heartfelt thanks to my editor at Springer, Ina Lindemann, who has been very supportive and helpful through various difficult times | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Group theory | |
650 | 4 | |a Combinatorics | |
650 | 4 | |a Group Theory and Generalizations | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Darstellung |g Mathematik |0 (DE-588)4128289-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Symmetrische Gruppe |0 (DE-588)4184204-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Symmetrische Gruppe |0 (DE-588)4184204-2 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Symmetrische Gruppe |0 (DE-588)4184204-2 |D s |
689 | 1 | 1 | |a Darstellung |g Mathematik |0 (DE-588)4128289-9 |D s |
689 | 1 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-4419-2869-6 |
830 | 0 | |a Graduate texts in mathematics |v 203 |w (DE-604)BV035421258 |9 203 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4757-6804-6 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-30-PQE |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857124 | ||
966 | e | |u https://ebookcentral.proquest.com/lib/ub-wuerzburg/detail.action?docID=3086359 |l UBW01 |p ZDB-30-PQE |q UBW_Einzelkauf |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804153095080378368 |
---|---|
any_adam_object | |
author | Sagan, Bruce E. 1954- |
author_GND | (DE-588)113115393 |
author_facet | Sagan, Bruce E. 1954- |
author_role | aut |
author_sort | Sagan, Bruce E. 1954- |
author_variant | b e s be bes |
building | Verbundindex |
bvnumber | BV042421707 |
classification_rvk | SK 260 |
classification_tum | MAT 000 |
collection | ZDB-30-PQE ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (ZDB-30-PQE)EBC3086359 (OCoLC)863899668 (DE-599)BVBBV042421707 |
dewey-full | 512.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.2 |
dewey-search | 512.2 |
dewey-sort | 3512.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4757-6804-6 |
edition | Second Edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03595nmm a2200565zcb4500</leader><controlfield tag="001">BV042421707</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210526 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2001 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781475768046</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4757-6804-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4757-6804-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC3086359</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863899668</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421707</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-20</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 260</subfield><subfield code="0">(DE-625)143227:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sagan, Bruce E.</subfield><subfield code="d">1954-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)113115393</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The symmetric group</subfield><subfield code="b">representations, combinatorial algorithms, and symmetric functions</subfield><subfield code="c">Bruce E. Sagan</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second Edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York</subfield><subfield code="b">Springer</subfield><subfield code="c">[2001]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XV, 238 Seiten)</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Graduate texts in mathematics</subfield><subfield code="v">203</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">I have been very gratified by the response to the first edition, which has resulted in it being sold out. This put some pressure on me to come out with a second edition and now, finally, here it is. The original text has stayed much the same, the major change being in the treatment of the hook formula which is now based on the beautiful Novelli-Pak-Stoyanovskii bijection (NPS 97]. I have also added a chapter on applications of the material from the first edition. This includes Stanley's theory of differential posets (Stn 88, Stn 90] and Fomin's related concept of growths (Fom 86, Fom 94, Fom 95], which extends some of the combinatorics of Sn-representations. Next come a couple of sections showing how groups acting on posets give rise to interesting representations that can be used to prove unimodality results (Stn 82]. Finally, we discuss Stanley's symmetric function analogue of the chromatic polynomial of a graph (Stn 95, Stn ta]. I would like to thank all the people, too numerous to mention, who pointed out typos in the first edition. My computer has been severely reprimanded for making them. Thanks also go to Christian Krattenthaler, Tom Roby, and Richard Stanley, all of whom read portions of the new material and gave me their comments. Finally, I would like to give my heartfelt thanks to my editor at Springer, Ina Lindemann, who has been very supportive and helpful through various difficult times</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combinatorics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group Theory and Generalizations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Darstellung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4128289-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Symmetrische Gruppe</subfield><subfield code="0">(DE-588)4184204-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Symmetrische Gruppe</subfield><subfield code="0">(DE-588)4184204-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Symmetrische Gruppe</subfield><subfield code="0">(DE-588)4184204-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Darstellung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4128289-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-4419-2869-6</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Graduate texts in mathematics</subfield><subfield code="v">203</subfield><subfield code="w">(DE-604)BV035421258</subfield><subfield code="9">203</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4757-6804-6</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857124</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/ub-wuerzburg/detail.action?docID=3086359</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">UBW_Einzelkauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV042421707 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:09Z |
institution | BVB |
isbn | 9781475768046 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857124 |
oclc_num | 863899668 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 DE-20 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 DE-20 |
physical | 1 Online-Ressource (XV, 238 Seiten) Illustrationen |
psigel | ZDB-30-PQE ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive ZDB-30-PQE UBW_Einzelkauf |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Springer |
record_format | marc |
series | Graduate texts in mathematics |
series2 | Graduate texts in mathematics |
spelling | Sagan, Bruce E. 1954- Verfasser (DE-588)113115393 aut The symmetric group representations, combinatorial algorithms, and symmetric functions Bruce E. Sagan Second Edition New York Springer [2001] 1 Online-Ressource (XV, 238 Seiten) Illustrationen txt rdacontent c rdamedia cr rdacarrier Graduate texts in mathematics 203 I have been very gratified by the response to the first edition, which has resulted in it being sold out. This put some pressure on me to come out with a second edition and now, finally, here it is. The original text has stayed much the same, the major change being in the treatment of the hook formula which is now based on the beautiful Novelli-Pak-Stoyanovskii bijection (NPS 97]. I have also added a chapter on applications of the material from the first edition. This includes Stanley's theory of differential posets (Stn 88, Stn 90] and Fomin's related concept of growths (Fom 86, Fom 94, Fom 95], which extends some of the combinatorics of Sn-representations. Next come a couple of sections showing how groups acting on posets give rise to interesting representations that can be used to prove unimodality results (Stn 82]. Finally, we discuss Stanley's symmetric function analogue of the chromatic polynomial of a graph (Stn 95, Stn ta]. I would like to thank all the people, too numerous to mention, who pointed out typos in the first edition. My computer has been severely reprimanded for making them. Thanks also go to Christian Krattenthaler, Tom Roby, and Richard Stanley, all of whom read portions of the new material and gave me their comments. Finally, I would like to give my heartfelt thanks to my editor at Springer, Ina Lindemann, who has been very supportive and helpful through various difficult times Mathematics Group theory Combinatorics Group Theory and Generalizations Mathematik Darstellung Mathematik (DE-588)4128289-9 gnd rswk-swf Symmetrische Gruppe (DE-588)4184204-2 gnd rswk-swf Symmetrische Gruppe (DE-588)4184204-2 s DE-604 Darstellung Mathematik (DE-588)4128289-9 s Erscheint auch als Druck-Ausgabe 978-1-4419-2869-6 Graduate texts in mathematics 203 (DE-604)BV035421258 203 https://doi.org/10.1007/978-1-4757-6804-6 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Sagan, Bruce E. 1954- The symmetric group representations, combinatorial algorithms, and symmetric functions Graduate texts in mathematics Mathematics Group theory Combinatorics Group Theory and Generalizations Mathematik Darstellung Mathematik (DE-588)4128289-9 gnd Symmetrische Gruppe (DE-588)4184204-2 gnd |
subject_GND | (DE-588)4128289-9 (DE-588)4184204-2 |
title | The symmetric group representations, combinatorial algorithms, and symmetric functions |
title_auth | The symmetric group representations, combinatorial algorithms, and symmetric functions |
title_exact_search | The symmetric group representations, combinatorial algorithms, and symmetric functions |
title_full | The symmetric group representations, combinatorial algorithms, and symmetric functions Bruce E. Sagan |
title_fullStr | The symmetric group representations, combinatorial algorithms, and symmetric functions Bruce E. Sagan |
title_full_unstemmed | The symmetric group representations, combinatorial algorithms, and symmetric functions Bruce E. Sagan |
title_short | The symmetric group |
title_sort | the symmetric group representations combinatorial algorithms and symmetric functions |
title_sub | representations, combinatorial algorithms, and symmetric functions |
topic | Mathematics Group theory Combinatorics Group Theory and Generalizations Mathematik Darstellung Mathematik (DE-588)4128289-9 gnd Symmetrische Gruppe (DE-588)4184204-2 gnd |
topic_facet | Mathematics Group theory Combinatorics Group Theory and Generalizations Mathematik Darstellung Mathematik Symmetrische Gruppe |
url | https://doi.org/10.1007/978-1-4757-6804-6 |
volume_link | (DE-604)BV035421258 |
work_keys_str_mv | AT saganbrucee thesymmetricgrouprepresentationscombinatorialalgorithmsandsymmetricfunctions |