Stochastic Processes: General Theory:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Springer US
1995
|
Schriftenreihe: | Mathematics and Its Applications
342 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Stochastic Processes: General Theory starts with the fundamental existence theorem of Kolmogorov, together with several of its extensions to stochastic processes. It treats the function theoretical aspects of processes and includes an extended account of martingales and their generalizations. Various compositions of (quasi- or semi-)martingales and their integrals are given. Here the Bochner boundedness principle plays a unifying role: a unique feature of the book. Applications to higher order stochastic differential equations and their special features are presented in detail. Stochastic processes in a manifold and multiparameter stochastic analysis are also discussed. Each of the seven chapters includes complements, exercises and extensive references: many avenues of research are suggested. The book is a completely revised and enlarged version of the author's Stochastic Processes and Integration (Noordhoff, 1979). The new title reflects the content and generality of the extensive amount of new material. Audience: Suitable as a text/reference for second year graduate classes and seminars. A knowledge of real analysis, including Lebesgue integration, is a prerequisite |
Beschreibung: | 1 Online-Ressource (XII, 628 p) |
ISBN: | 9781475765984 9781441947499 |
DOI: | 10.1007/978-1-4757-6598-4 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042421701 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1995 |||| o||u| ||||||eng d | ||
020 | |a 9781475765984 |c Online |9 978-1-4757-6598-4 | ||
020 | |a 9781441947499 |c Print |9 978-1-4419-4749-9 | ||
024 | 7 | |a 10.1007/978-1-4757-6598-4 |2 doi | |
035 | |a (OCoLC)1165480255 | ||
035 | |a (DE-599)BVBBV042421701 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 519.2 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Rao, M. M. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Stochastic Processes: General Theory |c by M. M. Rao |
264 | 1 | |a Boston, MA |b Springer US |c 1995 | |
300 | |a 1 Online-Ressource (XII, 628 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Mathematics and Its Applications |v 342 | |
500 | |a Stochastic Processes: General Theory starts with the fundamental existence theorem of Kolmogorov, together with several of its extensions to stochastic processes. It treats the function theoretical aspects of processes and includes an extended account of martingales and their generalizations. Various compositions of (quasi- or semi-)martingales and their integrals are given. Here the Bochner boundedness principle plays a unifying role: a unique feature of the book. Applications to higher order stochastic differential equations and their special features are presented in detail. Stochastic processes in a manifold and multiparameter stochastic analysis are also discussed. Each of the seven chapters includes complements, exercises and extensive references: many avenues of research are suggested. The book is a completely revised and enlarged version of the author's Stochastic Processes and Integration (Noordhoff, 1979). The new title reflects the content and generality of the extensive amount of new material. Audience: Suitable as a text/reference for second year graduate classes and seminars. A knowledge of real analysis, including Lebesgue integration, is a prerequisite | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Differential Equations | |
650 | 4 | |a Functions, special | |
650 | 4 | |a Distribution (Probability theory) | |
650 | 4 | |a Statistics | |
650 | 4 | |a Probability Theory and Stochastic Processes | |
650 | 4 | |a Special Functions | |
650 | 4 | |a Ordinary Differential Equations | |
650 | 4 | |a Statistics, general | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Statistik | |
650 | 0 | 7 | |a Stochastischer Prozess |0 (DE-588)4057630-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Integration |g Mathematik |0 (DE-588)4072852-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Stochastischer Prozess |0 (DE-588)4057630-9 |D s |
689 | 0 | 1 | |a Integration |g Mathematik |0 (DE-588)4072852-3 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4757-6598-4 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857118 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153095077232640 |
---|---|
any_adam_object | |
author | Rao, M. M. |
author_facet | Rao, M. M. |
author_role | aut |
author_sort | Rao, M. M. |
author_variant | m m r mm mmr |
building | Verbundindex |
bvnumber | BV042421701 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1165480255 (DE-599)BVBBV042421701 |
dewey-full | 519.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.2 |
dewey-search | 519.2 |
dewey-sort | 3519.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4757-6598-4 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03113nmm a2200565zcb4500</leader><controlfield tag="001">BV042421701</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1995 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781475765984</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4757-6598-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781441947499</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4419-4749-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4757-6598-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1165480255</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421701</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rao, M. M.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stochastic Processes: General Theory</subfield><subfield code="c">by M. M. Rao</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Springer US</subfield><subfield code="c">1995</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 628 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Mathematics and Its Applications</subfield><subfield code="v">342</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Stochastic Processes: General Theory starts with the fundamental existence theorem of Kolmogorov, together with several of its extensions to stochastic processes. It treats the function theoretical aspects of processes and includes an extended account of martingales and their generalizations. Various compositions of (quasi- or semi-)martingales and their integrals are given. Here the Bochner boundedness principle plays a unifying role: a unique feature of the book. Applications to higher order stochastic differential equations and their special features are presented in detail. Stochastic processes in a manifold and multiparameter stochastic analysis are also discussed. Each of the seven chapters includes complements, exercises and extensive references: many avenues of research are suggested. The book is a completely revised and enlarged version of the author's Stochastic Processes and Integration (Noordhoff, 1979). The new title reflects the content and generality of the extensive amount of new material. Audience: Suitable as a text/reference for second year graduate classes and seminars. A knowledge of real analysis, including Lebesgue integration, is a prerequisite</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functions, special</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distribution (Probability theory)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability Theory and Stochastic Processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Special Functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ordinary Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastischer Prozess</subfield><subfield code="0">(DE-588)4057630-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Integration</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4072852-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Stochastischer Prozess</subfield><subfield code="0">(DE-588)4057630-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Integration</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4072852-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4757-6598-4</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857118</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042421701 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:09Z |
institution | BVB |
isbn | 9781475765984 9781441947499 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857118 |
oclc_num | 1165480255 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XII, 628 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1995 |
publishDateSearch | 1995 |
publishDateSort | 1995 |
publisher | Springer US |
record_format | marc |
series2 | Mathematics and Its Applications |
spelling | Rao, M. M. Verfasser aut Stochastic Processes: General Theory by M. M. Rao Boston, MA Springer US 1995 1 Online-Ressource (XII, 628 p) txt rdacontent c rdamedia cr rdacarrier Mathematics and Its Applications 342 Stochastic Processes: General Theory starts with the fundamental existence theorem of Kolmogorov, together with several of its extensions to stochastic processes. It treats the function theoretical aspects of processes and includes an extended account of martingales and their generalizations. Various compositions of (quasi- or semi-)martingales and their integrals are given. Here the Bochner boundedness principle plays a unifying role: a unique feature of the book. Applications to higher order stochastic differential equations and their special features are presented in detail. Stochastic processes in a manifold and multiparameter stochastic analysis are also discussed. Each of the seven chapters includes complements, exercises and extensive references: many avenues of research are suggested. The book is a completely revised and enlarged version of the author's Stochastic Processes and Integration (Noordhoff, 1979). The new title reflects the content and generality of the extensive amount of new material. Audience: Suitable as a text/reference for second year graduate classes and seminars. A knowledge of real analysis, including Lebesgue integration, is a prerequisite Mathematics Differential Equations Functions, special Distribution (Probability theory) Statistics Probability Theory and Stochastic Processes Special Functions Ordinary Differential Equations Statistics, general Mathematik Statistik Stochastischer Prozess (DE-588)4057630-9 gnd rswk-swf Integration Mathematik (DE-588)4072852-3 gnd rswk-swf Stochastischer Prozess (DE-588)4057630-9 s Integration Mathematik (DE-588)4072852-3 s 1\p DE-604 https://doi.org/10.1007/978-1-4757-6598-4 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Rao, M. M. Stochastic Processes: General Theory Mathematics Differential Equations Functions, special Distribution (Probability theory) Statistics Probability Theory and Stochastic Processes Special Functions Ordinary Differential Equations Statistics, general Mathematik Statistik Stochastischer Prozess (DE-588)4057630-9 gnd Integration Mathematik (DE-588)4072852-3 gnd |
subject_GND | (DE-588)4057630-9 (DE-588)4072852-3 |
title | Stochastic Processes: General Theory |
title_auth | Stochastic Processes: General Theory |
title_exact_search | Stochastic Processes: General Theory |
title_full | Stochastic Processes: General Theory by M. M. Rao |
title_fullStr | Stochastic Processes: General Theory by M. M. Rao |
title_full_unstemmed | Stochastic Processes: General Theory by M. M. Rao |
title_short | Stochastic Processes: General Theory |
title_sort | stochastic processes general theory |
topic | Mathematics Differential Equations Functions, special Distribution (Probability theory) Statistics Probability Theory and Stochastic Processes Special Functions Ordinary Differential Equations Statistics, general Mathematik Statistik Stochastischer Prozess (DE-588)4057630-9 gnd Integration Mathematik (DE-588)4072852-3 gnd |
topic_facet | Mathematics Differential Equations Functions, special Distribution (Probability theory) Statistics Probability Theory and Stochastic Processes Special Functions Ordinary Differential Equations Statistics, general Mathematik Statistik Stochastischer Prozess Integration Mathematik |
url | https://doi.org/10.1007/978-1-4757-6598-4 |
work_keys_str_mv | AT raomm stochasticprocessesgeneraltheory |