Solitons in Field Theory and Nonlinear Analysis:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
2001
|
Schriftenreihe: | Springer Monographs in Mathematics
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | There are many interesting and challenging problems in the area of classical field theory. This area has attracted the attention of algebraists, geometers, and topologists in the past and has begun to attract more analysts. Analytically, classical field theory offers all types of differential equation problems which come from the two basic sets of equations in physics describing fundamental interactions, namely, the Yang-Mills equations governing electromagnetic, weak, and strong forces, reflecting internal symmetry, and the Einstein equations governing gravity, reflecting external symmetry. Naturally, a combination of these two sets of equations would lead to a theory wh ich couples both symmetries and unifies all forces, at the classical level. This book is a monograph on the analysis and solution of the nonlinear static equations arising in classical field theory. It is well known that many important physical phenomena are the consequences of various levels of symmetry breakings, internal or external, or both. These phenomena are manifested through the presence of locally conentrated solutions of the corresponding governing equations, giving rise to physical entities such as electric point charges, gravitational blackholes, cosmic strings, superconducting vortices, monopoles, dyons, and instantons. The study of these types of solutions, commonly referred to as solitons due to their particle-like behavior in interactions, except blackholes, is the subject of this book |
Beschreibung: | 1 Online-Ressource (XXIV, 553 p) |
ISBN: | 9781475765489 9781441929198 |
ISSN: | 1439-7382 |
DOI: | 10.1007/978-1-4757-6548-9 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042421694 | ||
003 | DE-604 | ||
005 | 20180126 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2001 |||| o||u| ||||||eng d | ||
020 | |a 9781475765489 |c Online |9 978-1-4757-6548-9 | ||
020 | |a 9781441929198 |c Print |9 978-1-4419-2919-8 | ||
024 | 7 | |a 10.1007/978-1-4757-6548-9 |2 doi | |
035 | |a (OCoLC)1184489264 | ||
035 | |a (DE-599)BVBBV042421694 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Yang, Yisong |e Verfasser |4 aut | |
245 | 1 | 0 | |a Solitons in Field Theory and Nonlinear Analysis |c by Yisong Yang |
264 | 1 | |a New York, NY |b Springer New York |c 2001 | |
300 | |a 1 Online-Ressource (XXIV, 553 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Springer Monographs in Mathematics |x 1439-7382 | |
500 | |a There are many interesting and challenging problems in the area of classical field theory. This area has attracted the attention of algebraists, geometers, and topologists in the past and has begun to attract more analysts. Analytically, classical field theory offers all types of differential equation problems which come from the two basic sets of equations in physics describing fundamental interactions, namely, the Yang-Mills equations governing electromagnetic, weak, and strong forces, reflecting internal symmetry, and the Einstein equations governing gravity, reflecting external symmetry. Naturally, a combination of these two sets of equations would lead to a theory wh ich couples both symmetries and unifies all forces, at the classical level. This book is a monograph on the analysis and solution of the nonlinear static equations arising in classical field theory. It is well known that many important physical phenomena are the consequences of various levels of symmetry breakings, internal or external, or both. These phenomena are manifested through the presence of locally conentrated solutions of the corresponding governing equations, giving rise to physical entities such as electric point charges, gravitational blackholes, cosmic strings, superconducting vortices, monopoles, dyons, and instantons. The study of these types of solutions, commonly referred to as solitons due to their particle-like behavior in interactions, except blackholes, is the subject of this book | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Analysis | |
650 | 4 | |a Theoretical, Mathematical and Computational Physics | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Feldtheorie |0 (DE-588)4016698-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematische Physik |0 (DE-588)4037952-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Soliton |0 (DE-588)4135213-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtlineare Analysis |0 (DE-588)4177490-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Mathematische Physik |0 (DE-588)4037952-8 |D s |
689 | 0 | 1 | |a Soliton |0 (DE-588)4135213-0 |D s |
689 | 0 | 2 | |a Feldtheorie |0 (DE-588)4016698-3 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Feldtheorie |0 (DE-588)4016698-3 |D s |
689 | 1 | 1 | |a Nichtlineare Analysis |0 (DE-588)4177490-5 |D s |
689 | 1 | 2 | |a Soliton |0 (DE-588)4135213-0 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4757-6548-9 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857111 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153095057309696 |
---|---|
any_adam_object | |
author | Yang, Yisong |
author_facet | Yang, Yisong |
author_role | aut |
author_sort | Yang, Yisong |
author_variant | y y yy |
building | Verbundindex |
bvnumber | BV042421694 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184489264 (DE-599)BVBBV042421694 |
dewey-full | 515 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515 |
dewey-search | 515 |
dewey-sort | 3515 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4757-6548-9 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03653nmm a2200589zc 4500</leader><controlfield tag="001">BV042421694</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180126 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2001 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781475765489</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4757-6548-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781441929198</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4419-2919-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4757-6548-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184489264</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421694</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yang, Yisong</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Solitons in Field Theory and Nonlinear Analysis</subfield><subfield code="c">by Yisong Yang</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XXIV, 553 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer Monographs in Mathematics</subfield><subfield code="x">1439-7382</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">There are many interesting and challenging problems in the area of classical field theory. This area has attracted the attention of algebraists, geometers, and topologists in the past and has begun to attract more analysts. Analytically, classical field theory offers all types of differential equation problems which come from the two basic sets of equations in physics describing fundamental interactions, namely, the Yang-Mills equations governing electromagnetic, weak, and strong forces, reflecting internal symmetry, and the Einstein equations governing gravity, reflecting external symmetry. Naturally, a combination of these two sets of equations would lead to a theory wh ich couples both symmetries and unifies all forces, at the classical level. This book is a monograph on the analysis and solution of the nonlinear static equations arising in classical field theory. It is well known that many important physical phenomena are the consequences of various levels of symmetry breakings, internal or external, or both. These phenomena are manifested through the presence of locally conentrated solutions of the corresponding governing equations, giving rise to physical entities such as electric point charges, gravitational blackholes, cosmic strings, superconducting vortices, monopoles, dyons, and instantons. The study of these types of solutions, commonly referred to as solitons due to their particle-like behavior in interactions, except blackholes, is the subject of this book</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theoretical, Mathematical and Computational Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Feldtheorie</subfield><subfield code="0">(DE-588)4016698-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Soliton</subfield><subfield code="0">(DE-588)4135213-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare Analysis</subfield><subfield code="0">(DE-588)4177490-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Soliton</subfield><subfield code="0">(DE-588)4135213-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Feldtheorie</subfield><subfield code="0">(DE-588)4016698-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Feldtheorie</subfield><subfield code="0">(DE-588)4016698-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Nichtlineare Analysis</subfield><subfield code="0">(DE-588)4177490-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Soliton</subfield><subfield code="0">(DE-588)4135213-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4757-6548-9</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857111</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042421694 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:09Z |
institution | BVB |
isbn | 9781475765489 9781441929198 |
issn | 1439-7382 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857111 |
oclc_num | 1184489264 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XXIV, 553 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Springer New York |
record_format | marc |
series2 | Springer Monographs in Mathematics |
spelling | Yang, Yisong Verfasser aut Solitons in Field Theory and Nonlinear Analysis by Yisong Yang New York, NY Springer New York 2001 1 Online-Ressource (XXIV, 553 p) txt rdacontent c rdamedia cr rdacarrier Springer Monographs in Mathematics 1439-7382 There are many interesting and challenging problems in the area of classical field theory. This area has attracted the attention of algebraists, geometers, and topologists in the past and has begun to attract more analysts. Analytically, classical field theory offers all types of differential equation problems which come from the two basic sets of equations in physics describing fundamental interactions, namely, the Yang-Mills equations governing electromagnetic, weak, and strong forces, reflecting internal symmetry, and the Einstein equations governing gravity, reflecting external symmetry. Naturally, a combination of these two sets of equations would lead to a theory wh ich couples both symmetries and unifies all forces, at the classical level. This book is a monograph on the analysis and solution of the nonlinear static equations arising in classical field theory. It is well known that many important physical phenomena are the consequences of various levels of symmetry breakings, internal or external, or both. These phenomena are manifested through the presence of locally conentrated solutions of the corresponding governing equations, giving rise to physical entities such as electric point charges, gravitational blackholes, cosmic strings, superconducting vortices, monopoles, dyons, and instantons. The study of these types of solutions, commonly referred to as solitons due to their particle-like behavior in interactions, except blackholes, is the subject of this book Mathematics Global analysis (Mathematics) Analysis Theoretical, Mathematical and Computational Physics Mathematik Feldtheorie (DE-588)4016698-3 gnd rswk-swf Mathematische Physik (DE-588)4037952-8 gnd rswk-swf Soliton (DE-588)4135213-0 gnd rswk-swf Nichtlineare Analysis (DE-588)4177490-5 gnd rswk-swf Mathematische Physik (DE-588)4037952-8 s Soliton (DE-588)4135213-0 s Feldtheorie (DE-588)4016698-3 s 1\p DE-604 Nichtlineare Analysis (DE-588)4177490-5 s 2\p DE-604 https://doi.org/10.1007/978-1-4757-6548-9 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Yang, Yisong Solitons in Field Theory and Nonlinear Analysis Mathematics Global analysis (Mathematics) Analysis Theoretical, Mathematical and Computational Physics Mathematik Feldtheorie (DE-588)4016698-3 gnd Mathematische Physik (DE-588)4037952-8 gnd Soliton (DE-588)4135213-0 gnd Nichtlineare Analysis (DE-588)4177490-5 gnd |
subject_GND | (DE-588)4016698-3 (DE-588)4037952-8 (DE-588)4135213-0 (DE-588)4177490-5 |
title | Solitons in Field Theory and Nonlinear Analysis |
title_auth | Solitons in Field Theory and Nonlinear Analysis |
title_exact_search | Solitons in Field Theory and Nonlinear Analysis |
title_full | Solitons in Field Theory and Nonlinear Analysis by Yisong Yang |
title_fullStr | Solitons in Field Theory and Nonlinear Analysis by Yisong Yang |
title_full_unstemmed | Solitons in Field Theory and Nonlinear Analysis by Yisong Yang |
title_short | Solitons in Field Theory and Nonlinear Analysis |
title_sort | solitons in field theory and nonlinear analysis |
topic | Mathematics Global analysis (Mathematics) Analysis Theoretical, Mathematical and Computational Physics Mathematik Feldtheorie (DE-588)4016698-3 gnd Mathematische Physik (DE-588)4037952-8 gnd Soliton (DE-588)4135213-0 gnd Nichtlineare Analysis (DE-588)4177490-5 gnd |
topic_facet | Mathematics Global analysis (Mathematics) Analysis Theoretical, Mathematical and Computational Physics Mathematik Feldtheorie Mathematische Physik Soliton Nichtlineare Analysis |
url | https://doi.org/10.1007/978-1-4757-6548-9 |
work_keys_str_mv | AT yangyisong solitonsinfieldtheoryandnonlinearanalysis |