Number Theory in Function Fields:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
2002
|
Schriftenreihe: | Graduate Texts in Mathematics
210 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Elementary number theory is concerned with arithmetic properties of the ring of integers. Early in the development of number theory, it was noticed that the ring of integers has many properties in common with the ring of polynomials over a finite field. The first part of this book illustrates this relationship by presenting, for example, analogues of the theorems of Fermat and Euler, Wilsons theorem, quadratic (and higher) reciprocity, the prime number theorem, and Dirichlets theorem on primes in an arithmetic progression. After presenting the required foundational material on function fields, the later chapters explore the analogy between global function fields and algebraic number fields. A variety of topics are presented, including: the ABC-conjecture, Artins conjecture on primitive roots, the Brumer-Stark conjecture, Drinfeld modules, class number formulae, and average value theorems. The first few chapters of this book are accessible to advanced undergraduates. The later chapters are designed for graduate students and professionals in mathematics and related fields who want to learn more about the very fruitful relationship between number theory in algebraic number fields and algebraic function fields. In this book many paths are set forth for future learning and exploration. Michael Rosen is Professor of Mathematics at Brown University, where hes been since 1962. He has published over 40 research papers and he is the co-author of A Classical Introduction to Modern Number Theory, with Kenneth Ireland. He received the Chauvenet Prize of the Mathematical Association of America in 1999 and the Philip J. Bray Teaching Award in 2001 |
Beschreibung: | 1 Online-Ressource (XI, 358 p) |
ISBN: | 9781475760460 9781441929549 |
ISSN: | 0072-5285 |
DOI: | 10.1007/978-1-4757-6046-0 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042421681 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2002 |||| o||u| ||||||eng d | ||
020 | |a 9781475760460 |c Online |9 978-1-4757-6046-0 | ||
020 | |a 9781441929549 |c Print |9 978-1-4419-2954-9 | ||
024 | 7 | |a 10.1007/978-1-4757-6046-0 |2 doi | |
035 | |a (OCoLC)863991587 | ||
035 | |a (DE-599)BVBBV042421681 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 512.7 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Rosen, Michael |e Verfasser |4 aut | |
245 | 1 | 0 | |a Number Theory in Function Fields |c by Michael Rosen |
264 | 1 | |a New York, NY |b Springer New York |c 2002 | |
300 | |a 1 Online-Ressource (XI, 358 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Graduate Texts in Mathematics |v 210 |x 0072-5285 | |
500 | |a Elementary number theory is concerned with arithmetic properties of the ring of integers. Early in the development of number theory, it was noticed that the ring of integers has many properties in common with the ring of polynomials over a finite field. The first part of this book illustrates this relationship by presenting, for example, analogues of the theorems of Fermat and Euler, Wilsons theorem, quadratic (and higher) reciprocity, the prime number theorem, and Dirichlets theorem on primes in an arithmetic progression. After presenting the required foundational material on function fields, the later chapters explore the analogy between global function fields and algebraic number fields. A variety of topics are presented, including: the ABC-conjecture, Artins conjecture on primitive roots, the Brumer-Stark conjecture, Drinfeld modules, class number formulae, and average value theorems. The first few chapters of this book are accessible to advanced undergraduates. The later chapters are designed for graduate students and professionals in mathematics and related fields who want to learn more about the very fruitful relationship between number theory in algebraic number fields and algebraic function fields. In this book many paths are set forth for future learning and exploration. Michael Rosen is Professor of Mathematics at Brown University, where hes been since 1962. He has published over 40 research papers and he is the co-author of A Classical Introduction to Modern Number Theory, with Kenneth Ireland. He received the Chauvenet Prize of the Mathematical Association of America in 1999 and the Philip J. Bray Teaching Award in 2001 | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Geometry, algebraic | |
650 | 4 | |a Field theory (Physics) | |
650 | 4 | |a Number theory | |
650 | 4 | |a Number Theory | |
650 | 4 | |a Field Theory and Polynomials | |
650 | 4 | |a Algebraic Geometry | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Algebraischer Funktionenkörper |0 (DE-588)4141850-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Funktionenkörper |0 (DE-588)4155688-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Zahlentheorie |0 (DE-588)4067277-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Zahlentheorie |0 (DE-588)4067277-3 |D s |
689 | 0 | 1 | |a Algebraischer Funktionenkörper |0 (DE-588)4141850-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Funktionenkörper |0 (DE-588)4155688-4 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4757-6046-0 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857098 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153095022706688 |
---|---|
any_adam_object | |
author | Rosen, Michael |
author_facet | Rosen, Michael |
author_role | aut |
author_sort | Rosen, Michael |
author_variant | m r mr |
building | Verbundindex |
bvnumber | BV042421681 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863991587 (DE-599)BVBBV042421681 |
dewey-full | 512.7 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.7 |
dewey-search | 512.7 |
dewey-sort | 3512.7 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4757-6046-0 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03701nmm a2200577zcb4500</leader><controlfield tag="001">BV042421681</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2002 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781475760460</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4757-6046-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781441929549</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4419-2954-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4757-6046-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863991587</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421681</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.7</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rosen, Michael</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Number Theory in Function Fields</subfield><subfield code="c">by Michael Rosen</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XI, 358 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Graduate Texts in Mathematics</subfield><subfield code="v">210</subfield><subfield code="x">0072-5285</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Elementary number theory is concerned with arithmetic properties of the ring of integers. Early in the development of number theory, it was noticed that the ring of integers has many properties in common with the ring of polynomials over a finite field. The first part of this book illustrates this relationship by presenting, for example, analogues of the theorems of Fermat and Euler, Wilsons theorem, quadratic (and higher) reciprocity, the prime number theorem, and Dirichlets theorem on primes in an arithmetic progression. After presenting the required foundational material on function fields, the later chapters explore the analogy between global function fields and algebraic number fields. A variety of topics are presented, including: the ABC-conjecture, Artins conjecture on primitive roots, the Brumer-Stark conjecture, Drinfeld modules, class number formulae, and average value theorems. The first few chapters of this book are accessible to advanced undergraduates. The later chapters are designed for graduate students and professionals in mathematics and related fields who want to learn more about the very fruitful relationship between number theory in algebraic number fields and algebraic function fields. In this book many paths are set forth for future learning and exploration. Michael Rosen is Professor of Mathematics at Brown University, where hes been since 1962. He has published over 40 research papers and he is the co-author of A Classical Introduction to Modern Number Theory, with Kenneth Ireland. He received the Chauvenet Prize of the Mathematical Association of America in 1999 and the Philip J. Bray Teaching Award in 2001</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, algebraic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Field theory (Physics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Field Theory and Polynomials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraischer Funktionenkörper</subfield><subfield code="0">(DE-588)4141850-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktionenkörper</subfield><subfield code="0">(DE-588)4155688-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zahlentheorie</subfield><subfield code="0">(DE-588)4067277-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Zahlentheorie</subfield><subfield code="0">(DE-588)4067277-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Algebraischer Funktionenkörper</subfield><subfield code="0">(DE-588)4141850-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Funktionenkörper</subfield><subfield code="0">(DE-588)4155688-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4757-6046-0</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857098</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042421681 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:09Z |
institution | BVB |
isbn | 9781475760460 9781441929549 |
issn | 0072-5285 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857098 |
oclc_num | 863991587 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XI, 358 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Springer New York |
record_format | marc |
series2 | Graduate Texts in Mathematics |
spelling | Rosen, Michael Verfasser aut Number Theory in Function Fields by Michael Rosen New York, NY Springer New York 2002 1 Online-Ressource (XI, 358 p) txt rdacontent c rdamedia cr rdacarrier Graduate Texts in Mathematics 210 0072-5285 Elementary number theory is concerned with arithmetic properties of the ring of integers. Early in the development of number theory, it was noticed that the ring of integers has many properties in common with the ring of polynomials over a finite field. The first part of this book illustrates this relationship by presenting, for example, analogues of the theorems of Fermat and Euler, Wilsons theorem, quadratic (and higher) reciprocity, the prime number theorem, and Dirichlets theorem on primes in an arithmetic progression. After presenting the required foundational material on function fields, the later chapters explore the analogy between global function fields and algebraic number fields. A variety of topics are presented, including: the ABC-conjecture, Artins conjecture on primitive roots, the Brumer-Stark conjecture, Drinfeld modules, class number formulae, and average value theorems. The first few chapters of this book are accessible to advanced undergraduates. The later chapters are designed for graduate students and professionals in mathematics and related fields who want to learn more about the very fruitful relationship between number theory in algebraic number fields and algebraic function fields. In this book many paths are set forth for future learning and exploration. Michael Rosen is Professor of Mathematics at Brown University, where hes been since 1962. He has published over 40 research papers and he is the co-author of A Classical Introduction to Modern Number Theory, with Kenneth Ireland. He received the Chauvenet Prize of the Mathematical Association of America in 1999 and the Philip J. Bray Teaching Award in 2001 Mathematics Geometry, algebraic Field theory (Physics) Number theory Number Theory Field Theory and Polynomials Algebraic Geometry Mathematik Algebraischer Funktionenkörper (DE-588)4141850-5 gnd rswk-swf Funktionenkörper (DE-588)4155688-4 gnd rswk-swf Zahlentheorie (DE-588)4067277-3 gnd rswk-swf Zahlentheorie (DE-588)4067277-3 s Algebraischer Funktionenkörper (DE-588)4141850-5 s 1\p DE-604 Funktionenkörper (DE-588)4155688-4 s 2\p DE-604 https://doi.org/10.1007/978-1-4757-6046-0 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Rosen, Michael Number Theory in Function Fields Mathematics Geometry, algebraic Field theory (Physics) Number theory Number Theory Field Theory and Polynomials Algebraic Geometry Mathematik Algebraischer Funktionenkörper (DE-588)4141850-5 gnd Funktionenkörper (DE-588)4155688-4 gnd Zahlentheorie (DE-588)4067277-3 gnd |
subject_GND | (DE-588)4141850-5 (DE-588)4155688-4 (DE-588)4067277-3 |
title | Number Theory in Function Fields |
title_auth | Number Theory in Function Fields |
title_exact_search | Number Theory in Function Fields |
title_full | Number Theory in Function Fields by Michael Rosen |
title_fullStr | Number Theory in Function Fields by Michael Rosen |
title_full_unstemmed | Number Theory in Function Fields by Michael Rosen |
title_short | Number Theory in Function Fields |
title_sort | number theory in function fields |
topic | Mathematics Geometry, algebraic Field theory (Physics) Number theory Number Theory Field Theory and Polynomials Algebraic Geometry Mathematik Algebraischer Funktionenkörper (DE-588)4141850-5 gnd Funktionenkörper (DE-588)4155688-4 gnd Zahlentheorie (DE-588)4067277-3 gnd |
topic_facet | Mathematics Geometry, algebraic Field theory (Physics) Number theory Number Theory Field Theory and Polynomials Algebraic Geometry Mathematik Algebraischer Funktionenkörper Funktionenkörper Zahlentheorie |
url | https://doi.org/10.1007/978-1-4757-6046-0 |
work_keys_str_mv | AT rosenmichael numbertheoryinfunctionfields |