Introduction to the Mori Program:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
2002
|
Schriftenreihe: | Universitext
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This book started as a collection of personal notes that I made to help me to understand what we call the Mori program, a program that emerged in the last two decades as an effective approach toward the biregular and/or birational classification theory of higher-dimensional algebraic varieties. In some literatures the Mori program restrictively refers to an algorithm, called the minimal model program, to produce minimal models of higher-dimensional algebraic varieties. (Classically, the construction of minimal models was known only for algebraic varieties of dimension less than or equal to 2. ) Here in this book, however, we use the word in a broader sense to represent a unifying scheme that is a fusion of the minimal model program and the so-called Iitaka program. As such, I had no hesitation to, or rather even made elaborate efforts to, extract nice arguments from the existing literature whenever it seemed appropriate to fit them into a comprehensible development of the theory, even to the extent of copying them literally word by word. I am particularly aware of the original sources of the subject matters in the following list: Chapter 1. Barth-Peters-Van de Ven [I], Beauville [1], Clemens-Kollar-Mori [I], Griffiths-Harris [1], Hartshorne [3], litaka [5], Kawamata-Matsuda Matsuki [1], Kodaira [2][3][4][5], Kollar [5], Mori [2][3], Reid [9], Shafarevich [I], Wilson [I] Chapter 2. Iitaka [2] [3] [5], Kawamata [1][2], Vojta [1] VI Preface Chapter 3 |
Beschreibung: | 1 Online-Ressource (XXIV, 478 p) |
ISBN: | 9781475756029 9781441931252 |
ISSN: | 0172-5939 |
DOI: | 10.1007/978-1-4757-5602-9 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042421668 | ||
003 | DE-604 | ||
005 | 20171212 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2002 |||| o||u| ||||||eng d | ||
020 | |a 9781475756029 |c Online |9 978-1-4757-5602-9 | ||
020 | |a 9781441931252 |c Print |9 978-1-4419-3125-2 | ||
024 | 7 | |a 10.1007/978-1-4757-5602-9 |2 doi | |
035 | |a (OCoLC)1184498624 | ||
035 | |a (DE-599)BVBBV042421668 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 516.35 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Matsuki, Kenji |e Verfasser |4 aut | |
245 | 1 | 0 | |a Introduction to the Mori Program |c by Kenji Matsuki |
264 | 1 | |a New York, NY |b Springer New York |c 2002 | |
300 | |a 1 Online-Ressource (XXIV, 478 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Universitext |x 0172-5939 | |
500 | |a This book started as a collection of personal notes that I made to help me to understand what we call the Mori program, a program that emerged in the last two decades as an effective approach toward the biregular and/or birational classification theory of higher-dimensional algebraic varieties. In some literatures the Mori program restrictively refers to an algorithm, called the minimal model program, to produce minimal models of higher-dimensional algebraic varieties. (Classically, the construction of minimal models was known only for algebraic varieties of dimension less than or equal to 2. ) Here in this book, however, we use the word in a broader sense to represent a unifying scheme that is a fusion of the minimal model program and the so-called Iitaka program. As such, I had no hesitation to, or rather even made elaborate efforts to, extract nice arguments from the existing literature whenever it seemed appropriate to fit them into a comprehensible development of the theory, even to the extent of copying them literally word by word. I am particularly aware of the original sources of the subject matters in the following list: Chapter 1. Barth-Peters-Van de Ven [I], Beauville [1], Clemens-Kollar-Mori [I], Griffiths-Harris [1], Hartshorne [3], litaka [5], Kawamata-Matsuda Matsuki [1], Kodaira [2][3][4][5], Kollar [5], Mori [2][3], Reid [9], Shafarevich [I], Wilson [I] Chapter 2. Iitaka [2] [3] [5], Kawamata [1][2], Vojta [1] VI Preface Chapter 3 | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Geometry, algebraic | |
650 | 4 | |a Algebraic Geometry | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Algebraische Varietät |0 (DE-588)4581715-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Klassifikationstheorie |0 (DE-588)4164034-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Algebraische Varietät |0 (DE-588)4581715-7 |D s |
689 | 0 | 1 | |a Klassifikationstheorie |0 (DE-588)4164034-2 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4757-5602-9 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857085 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153094988103680 |
---|---|
any_adam_object | |
author | Matsuki, Kenji |
author_facet | Matsuki, Kenji |
author_role | aut |
author_sort | Matsuki, Kenji |
author_variant | k m km |
building | Verbundindex |
bvnumber | BV042421668 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184498624 (DE-599)BVBBV042421668 |
dewey-full | 516.35 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.35 |
dewey-search | 516.35 |
dewey-sort | 3516.35 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4757-5602-9 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03114nmm a2200481zc 4500</leader><controlfield tag="001">BV042421668</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20171212 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2002 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781475756029</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4757-5602-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781441931252</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4419-3125-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4757-5602-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184498624</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421668</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.35</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Matsuki, Kenji</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to the Mori Program</subfield><subfield code="c">by Kenji Matsuki</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XXIV, 478 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Universitext</subfield><subfield code="x">0172-5939</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book started as a collection of personal notes that I made to help me to understand what we call the Mori program, a program that emerged in the last two decades as an effective approach toward the biregular and/or birational classification theory of higher-dimensional algebraic varieties. In some literatures the Mori program restrictively refers to an algorithm, called the minimal model program, to produce minimal models of higher-dimensional algebraic varieties. (Classically, the construction of minimal models was known only for algebraic varieties of dimension less than or equal to 2. ) Here in this book, however, we use the word in a broader sense to represent a unifying scheme that is a fusion of the minimal model program and the so-called Iitaka program. As such, I had no hesitation to, or rather even made elaborate efforts to, extract nice arguments from the existing literature whenever it seemed appropriate to fit them into a comprehensible development of the theory, even to the extent of copying them literally word by word. I am particularly aware of the original sources of the subject matters in the following list: Chapter 1. Barth-Peters-Van de Ven [I], Beauville [1], Clemens-Kollar-Mori [I], Griffiths-Harris [1], Hartshorne [3], litaka [5], Kawamata-Matsuda Matsuki [1], Kodaira [2][3][4][5], Kollar [5], Mori [2][3], Reid [9], Shafarevich [I], Wilson [I] Chapter 2. Iitaka [2] [3] [5], Kawamata [1][2], Vojta [1] VI Preface Chapter 3</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, algebraic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Varietät</subfield><subfield code="0">(DE-588)4581715-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Klassifikationstheorie</subfield><subfield code="0">(DE-588)4164034-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Algebraische Varietät</subfield><subfield code="0">(DE-588)4581715-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Klassifikationstheorie</subfield><subfield code="0">(DE-588)4164034-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4757-5602-9</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857085</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042421668 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:09Z |
institution | BVB |
isbn | 9781475756029 9781441931252 |
issn | 0172-5939 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857085 |
oclc_num | 1184498624 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XXIV, 478 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Springer New York |
record_format | marc |
series2 | Universitext |
spelling | Matsuki, Kenji Verfasser aut Introduction to the Mori Program by Kenji Matsuki New York, NY Springer New York 2002 1 Online-Ressource (XXIV, 478 p) txt rdacontent c rdamedia cr rdacarrier Universitext 0172-5939 This book started as a collection of personal notes that I made to help me to understand what we call the Mori program, a program that emerged in the last two decades as an effective approach toward the biregular and/or birational classification theory of higher-dimensional algebraic varieties. In some literatures the Mori program restrictively refers to an algorithm, called the minimal model program, to produce minimal models of higher-dimensional algebraic varieties. (Classically, the construction of minimal models was known only for algebraic varieties of dimension less than or equal to 2. ) Here in this book, however, we use the word in a broader sense to represent a unifying scheme that is a fusion of the minimal model program and the so-called Iitaka program. As such, I had no hesitation to, or rather even made elaborate efforts to, extract nice arguments from the existing literature whenever it seemed appropriate to fit them into a comprehensible development of the theory, even to the extent of copying them literally word by word. I am particularly aware of the original sources of the subject matters in the following list: Chapter 1. Barth-Peters-Van de Ven [I], Beauville [1], Clemens-Kollar-Mori [I], Griffiths-Harris [1], Hartshorne [3], litaka [5], Kawamata-Matsuda Matsuki [1], Kodaira [2][3][4][5], Kollar [5], Mori [2][3], Reid [9], Shafarevich [I], Wilson [I] Chapter 2. Iitaka [2] [3] [5], Kawamata [1][2], Vojta [1] VI Preface Chapter 3 Mathematics Geometry, algebraic Algebraic Geometry Mathematik Algebraische Varietät (DE-588)4581715-7 gnd rswk-swf Klassifikationstheorie (DE-588)4164034-2 gnd rswk-swf Algebraische Varietät (DE-588)4581715-7 s Klassifikationstheorie (DE-588)4164034-2 s 1\p DE-604 https://doi.org/10.1007/978-1-4757-5602-9 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Matsuki, Kenji Introduction to the Mori Program Mathematics Geometry, algebraic Algebraic Geometry Mathematik Algebraische Varietät (DE-588)4581715-7 gnd Klassifikationstheorie (DE-588)4164034-2 gnd |
subject_GND | (DE-588)4581715-7 (DE-588)4164034-2 |
title | Introduction to the Mori Program |
title_auth | Introduction to the Mori Program |
title_exact_search | Introduction to the Mori Program |
title_full | Introduction to the Mori Program by Kenji Matsuki |
title_fullStr | Introduction to the Mori Program by Kenji Matsuki |
title_full_unstemmed | Introduction to the Mori Program by Kenji Matsuki |
title_short | Introduction to the Mori Program |
title_sort | introduction to the mori program |
topic | Mathematics Geometry, algebraic Algebraic Geometry Mathematik Algebraische Varietät (DE-588)4581715-7 gnd Klassifikationstheorie (DE-588)4164034-2 gnd |
topic_facet | Mathematics Geometry, algebraic Algebraic Geometry Mathematik Algebraische Varietät Klassifikationstheorie |
url | https://doi.org/10.1007/978-1-4757-5602-9 |
work_keys_str_mv | AT matsukikenji introductiontothemoriprogram |