Higher-Dimensional Algebraic Geometry:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
2001
|
Schriftenreihe: | Universitext
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Higher-Dimensional Algebraic Geometry studies the classification theory of algebraic varieties. This very active area of research is still developing, but an amazing quantity of knowledge has accumulated over the past twenty years. The author's goal is to provide an easily accessible introduction to the subject. The book covers in the beginning preparatory and standard definitions and results, moves on to discuss various aspects of the geometry of smooth projective varieties with many rational curves, and finishes in taking the first steps towards Mori's minimal model program of classification of algebraic varieties by proving the cone and contraction theorems. The book is well-organized and the author has kept the number of concepts that are used but not proved to a minimum to provide a mostly self-contained introduction to graduate students and researchers |
Beschreibung: | 1 Online-Ressource (XIII, 234 p) |
ISBN: | 9781475754063 9781441929174 |
ISSN: | 0172-5939 |
DOI: | 10.1007/978-1-4757-5406-3 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042421657 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2001 |||| o||u| ||||||eng d | ||
020 | |a 9781475754063 |c Online |9 978-1-4757-5406-3 | ||
020 | |a 9781441929174 |c Print |9 978-1-4419-2917-4 | ||
024 | 7 | |a 10.1007/978-1-4757-5406-3 |2 doi | |
035 | |a (OCoLC)863972954 | ||
035 | |a (DE-599)BVBBV042421657 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 516.35 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Debarre, Olivier |e Verfasser |4 aut | |
245 | 1 | 0 | |a Higher-Dimensional Algebraic Geometry |c by Olivier Debarre |
264 | 1 | |a New York, NY |b Springer New York |c 2001 | |
300 | |a 1 Online-Ressource (XIII, 234 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Universitext |x 0172-5939 | |
500 | |a Higher-Dimensional Algebraic Geometry studies the classification theory of algebraic varieties. This very active area of research is still developing, but an amazing quantity of knowledge has accumulated over the past twenty years. The author's goal is to provide an easily accessible introduction to the subject. The book covers in the beginning preparatory and standard definitions and results, moves on to discuss various aspects of the geometry of smooth projective varieties with many rational curves, and finishes in taking the first steps towards Mori's minimal model program of classification of algebraic varieties by proving the cone and contraction theorems. The book is well-organized and the author has kept the number of concepts that are used but not proved to a minimum to provide a mostly self-contained introduction to graduate students and researchers | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Geometry, algebraic | |
650 | 4 | |a Algebraic Geometry | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Algebraische Geometrie |0 (DE-588)4001161-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Algebraische Geometrie |0 (DE-588)4001161-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4757-5406-3 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857074 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153094979715072 |
---|---|
any_adam_object | |
author | Debarre, Olivier |
author_facet | Debarre, Olivier |
author_role | aut |
author_sort | Debarre, Olivier |
author_variant | o d od |
building | Verbundindex |
bvnumber | BV042421657 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863972954 (DE-599)BVBBV042421657 |
dewey-full | 516.35 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.35 |
dewey-search | 516.35 |
dewey-sort | 3516.35 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4757-5406-3 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02385nmm a2200457zc 4500</leader><controlfield tag="001">BV042421657</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2001 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781475754063</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4757-5406-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781441929174</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4419-2917-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4757-5406-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863972954</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421657</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.35</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Debarre, Olivier</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Higher-Dimensional Algebraic Geometry</subfield><subfield code="c">by Olivier Debarre</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIII, 234 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Universitext</subfield><subfield code="x">0172-5939</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Higher-Dimensional Algebraic Geometry studies the classification theory of algebraic varieties. This very active area of research is still developing, but an amazing quantity of knowledge has accumulated over the past twenty years. The author's goal is to provide an easily accessible introduction to the subject. The book covers in the beginning preparatory and standard definitions and results, moves on to discuss various aspects of the geometry of smooth projective varieties with many rational curves, and finishes in taking the first steps towards Mori's minimal model program of classification of algebraic varieties by proving the cone and contraction theorems. The book is well-organized and the author has kept the number of concepts that are used but not proved to a minimum to provide a mostly self-contained introduction to graduate students and researchers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, algebraic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Geometrie</subfield><subfield code="0">(DE-588)4001161-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Algebraische Geometrie</subfield><subfield code="0">(DE-588)4001161-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4757-5406-3</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857074</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042421657 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:09Z |
institution | BVB |
isbn | 9781475754063 9781441929174 |
issn | 0172-5939 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857074 |
oclc_num | 863972954 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XIII, 234 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Springer New York |
record_format | marc |
series2 | Universitext |
spelling | Debarre, Olivier Verfasser aut Higher-Dimensional Algebraic Geometry by Olivier Debarre New York, NY Springer New York 2001 1 Online-Ressource (XIII, 234 p) txt rdacontent c rdamedia cr rdacarrier Universitext 0172-5939 Higher-Dimensional Algebraic Geometry studies the classification theory of algebraic varieties. This very active area of research is still developing, but an amazing quantity of knowledge has accumulated over the past twenty years. The author's goal is to provide an easily accessible introduction to the subject. The book covers in the beginning preparatory and standard definitions and results, moves on to discuss various aspects of the geometry of smooth projective varieties with many rational curves, and finishes in taking the first steps towards Mori's minimal model program of classification of algebraic varieties by proving the cone and contraction theorems. The book is well-organized and the author has kept the number of concepts that are used but not proved to a minimum to provide a mostly self-contained introduction to graduate students and researchers Mathematics Geometry, algebraic Algebraic Geometry Mathematik Algebraische Geometrie (DE-588)4001161-6 gnd rswk-swf Algebraische Geometrie (DE-588)4001161-6 s 1\p DE-604 https://doi.org/10.1007/978-1-4757-5406-3 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Debarre, Olivier Higher-Dimensional Algebraic Geometry Mathematics Geometry, algebraic Algebraic Geometry Mathematik Algebraische Geometrie (DE-588)4001161-6 gnd |
subject_GND | (DE-588)4001161-6 |
title | Higher-Dimensional Algebraic Geometry |
title_auth | Higher-Dimensional Algebraic Geometry |
title_exact_search | Higher-Dimensional Algebraic Geometry |
title_full | Higher-Dimensional Algebraic Geometry by Olivier Debarre |
title_fullStr | Higher-Dimensional Algebraic Geometry by Olivier Debarre |
title_full_unstemmed | Higher-Dimensional Algebraic Geometry by Olivier Debarre |
title_short | Higher-Dimensional Algebraic Geometry |
title_sort | higher dimensional algebraic geometry |
topic | Mathematics Geometry, algebraic Algebraic Geometry Mathematik Algebraische Geometrie (DE-588)4001161-6 gnd |
topic_facet | Mathematics Geometry, algebraic Algebraic Geometry Mathematik Algebraische Geometrie |
url | https://doi.org/10.1007/978-1-4757-5406-3 |
work_keys_str_mv | AT debarreolivier higherdimensionalalgebraicgeometry |