Finite Element Method for Hemivariational Inequalities: Theory, Methods and Applications
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Springer US
1999
|
Schriftenreihe: | Nonconvex Optimization and Its Applications
35 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Hemivariational inequalities represent an important class of problems in nonsmooth and nonconvex mechanics. By means of them, problems with nonmonotone, possibly multivalued, constitutive laws can be formulated, mathematically analyzed and finally numerically solved. The present book gives a rigorous analysis of finite element approximation for a class of hemivariational inequalities of elliptic and parabolic type. Finite element models are described and their convergence properties are established. Discretized models are numerically treated as nonconvex and nonsmooth optimization problems. The book includes a comprehensive description of typical representants of nonsmooth optimization methods. Basic knowledge of finite element mathematics, functional and nonsmooth analysis is needed. The book is self-contained, and all necessary results from these disciplines are summarized in the introductory chapter. Audience: Engineers and applied mathematicians at universities and working in industry. Also graduate-level students in advanced nonlinear computational mechanics, mathematics of finite elements and approximation theory. Chapter 1 includes the necessary prerequisite materials |
Beschreibung: | 1 Online-Ressource (XXV, 260 p) |
ISBN: | 9781475752335 9781441948151 |
ISSN: | 1571-568X |
DOI: | 10.1007/978-1-4757-5233-5 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042421647 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1999 |||| o||u| ||||||eng d | ||
020 | |a 9781475752335 |c Online |9 978-1-4757-5233-5 | ||
020 | |a 9781441948151 |c Print |9 978-1-4419-4815-1 | ||
024 | 7 | |a 10.1007/978-1-4757-5233-5 |2 doi | |
035 | |a (OCoLC)1184492662 | ||
035 | |a (DE-599)BVBBV042421647 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 510 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Haslinger, Jaroslav |e Verfasser |4 aut | |
245 | 1 | 0 | |a Finite Element Method for Hemivariational Inequalities |b Theory, Methods and Applications |c by Jaroslav Haslinger, Markku Miettinen, Panagiotis D. Panagiotopoulos |
264 | 1 | |a Boston, MA |b Springer US |c 1999 | |
300 | |a 1 Online-Ressource (XXV, 260 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Nonconvex Optimization and Its Applications |v 35 |x 1571-568X | |
500 | |a Hemivariational inequalities represent an important class of problems in nonsmooth and nonconvex mechanics. By means of them, problems with nonmonotone, possibly multivalued, constitutive laws can be formulated, mathematically analyzed and finally numerically solved. The present book gives a rigorous analysis of finite element approximation for a class of hemivariational inequalities of elliptic and parabolic type. Finite element models are described and their convergence properties are established. Discretized models are numerically treated as nonconvex and nonsmooth optimization problems. The book includes a comprehensive description of typical representants of nonsmooth optimization methods. Basic knowledge of finite element mathematics, functional and nonsmooth analysis is needed. The book is self-contained, and all necessary results from these disciplines are summarized in the introductory chapter. Audience: Engineers and applied mathematicians at universities and working in industry. Also graduate-level students in advanced nonlinear computational mechanics, mathematics of finite elements and approximation theory. Chapter 1 includes the necessary prerequisite materials | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Mechanics | |
650 | 4 | |a Engineering mathematics | |
650 | 4 | |a Mathematics, general | |
650 | 4 | |a Appl.Mathematics/Computational Methods of Engineering | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Finite-Elemente-Methode |0 (DE-588)4017233-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hemivariationsungleichung |0 (DE-588)4564212-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Hemivariationsungleichung |0 (DE-588)4564212-6 |D s |
689 | 0 | 1 | |a Finite-Elemente-Methode |0 (DE-588)4017233-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Miettinen, Markku |e Sonstige |4 oth | |
700 | 1 | |a Panagiotopoulos, Panagiotis D. |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4757-5233-5 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857064 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153094971326464 |
---|---|
any_adam_object | |
author | Haslinger, Jaroslav |
author_facet | Haslinger, Jaroslav |
author_role | aut |
author_sort | Haslinger, Jaroslav |
author_variant | j h jh |
building | Verbundindex |
bvnumber | BV042421647 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184492662 (DE-599)BVBBV042421647 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4757-5233-5 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03193nmm a2200529zcb4500</leader><controlfield tag="001">BV042421647</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1999 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781475752335</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4757-5233-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781441948151</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4419-4815-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4757-5233-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184492662</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421647</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Haslinger, Jaroslav</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Finite Element Method for Hemivariational Inequalities</subfield><subfield code="b">Theory, Methods and Applications</subfield><subfield code="c">by Jaroslav Haslinger, Markku Miettinen, Panagiotis D. Panagiotopoulos</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Springer US</subfield><subfield code="c">1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XXV, 260 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Nonconvex Optimization and Its Applications</subfield><subfield code="v">35</subfield><subfield code="x">1571-568X</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Hemivariational inequalities represent an important class of problems in nonsmooth and nonconvex mechanics. By means of them, problems with nonmonotone, possibly multivalued, constitutive laws can be formulated, mathematically analyzed and finally numerically solved. The present book gives a rigorous analysis of finite element approximation for a class of hemivariational inequalities of elliptic and parabolic type. Finite element models are described and their convergence properties are established. Discretized models are numerically treated as nonconvex and nonsmooth optimization problems. The book includes a comprehensive description of typical representants of nonsmooth optimization methods. Basic knowledge of finite element mathematics, functional and nonsmooth analysis is needed. The book is self-contained, and all necessary results from these disciplines are summarized in the introductory chapter. Audience: Engineers and applied mathematicians at universities and working in industry. Also graduate-level students in advanced nonlinear computational mechanics, mathematics of finite elements and approximation theory. Chapter 1 includes the necessary prerequisite materials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Appl.Mathematics/Computational Methods of Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Finite-Elemente-Methode</subfield><subfield code="0">(DE-588)4017233-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hemivariationsungleichung</subfield><subfield code="0">(DE-588)4564212-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hemivariationsungleichung</subfield><subfield code="0">(DE-588)4564212-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Finite-Elemente-Methode</subfield><subfield code="0">(DE-588)4017233-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Miettinen, Markku</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Panagiotopoulos, Panagiotis D.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4757-5233-5</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857064</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042421647 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:09Z |
institution | BVB |
isbn | 9781475752335 9781441948151 |
issn | 1571-568X |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857064 |
oclc_num | 1184492662 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XXV, 260 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1999 |
publishDateSearch | 1999 |
publishDateSort | 1999 |
publisher | Springer US |
record_format | marc |
series2 | Nonconvex Optimization and Its Applications |
spelling | Haslinger, Jaroslav Verfasser aut Finite Element Method for Hemivariational Inequalities Theory, Methods and Applications by Jaroslav Haslinger, Markku Miettinen, Panagiotis D. Panagiotopoulos Boston, MA Springer US 1999 1 Online-Ressource (XXV, 260 p) txt rdacontent c rdamedia cr rdacarrier Nonconvex Optimization and Its Applications 35 1571-568X Hemivariational inequalities represent an important class of problems in nonsmooth and nonconvex mechanics. By means of them, problems with nonmonotone, possibly multivalued, constitutive laws can be formulated, mathematically analyzed and finally numerically solved. The present book gives a rigorous analysis of finite element approximation for a class of hemivariational inequalities of elliptic and parabolic type. Finite element models are described and their convergence properties are established. Discretized models are numerically treated as nonconvex and nonsmooth optimization problems. The book includes a comprehensive description of typical representants of nonsmooth optimization methods. Basic knowledge of finite element mathematics, functional and nonsmooth analysis is needed. The book is self-contained, and all necessary results from these disciplines are summarized in the introductory chapter. Audience: Engineers and applied mathematicians at universities and working in industry. Also graduate-level students in advanced nonlinear computational mechanics, mathematics of finite elements and approximation theory. Chapter 1 includes the necessary prerequisite materials Mathematics Mechanics Engineering mathematics Mathematics, general Appl.Mathematics/Computational Methods of Engineering Mathematik Finite-Elemente-Methode (DE-588)4017233-8 gnd rswk-swf Hemivariationsungleichung (DE-588)4564212-6 gnd rswk-swf Hemivariationsungleichung (DE-588)4564212-6 s Finite-Elemente-Methode (DE-588)4017233-8 s 1\p DE-604 Miettinen, Markku Sonstige oth Panagiotopoulos, Panagiotis D. Sonstige oth https://doi.org/10.1007/978-1-4757-5233-5 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Haslinger, Jaroslav Finite Element Method for Hemivariational Inequalities Theory, Methods and Applications Mathematics Mechanics Engineering mathematics Mathematics, general Appl.Mathematics/Computational Methods of Engineering Mathematik Finite-Elemente-Methode (DE-588)4017233-8 gnd Hemivariationsungleichung (DE-588)4564212-6 gnd |
subject_GND | (DE-588)4017233-8 (DE-588)4564212-6 |
title | Finite Element Method for Hemivariational Inequalities Theory, Methods and Applications |
title_auth | Finite Element Method for Hemivariational Inequalities Theory, Methods and Applications |
title_exact_search | Finite Element Method for Hemivariational Inequalities Theory, Methods and Applications |
title_full | Finite Element Method for Hemivariational Inequalities Theory, Methods and Applications by Jaroslav Haslinger, Markku Miettinen, Panagiotis D. Panagiotopoulos |
title_fullStr | Finite Element Method for Hemivariational Inequalities Theory, Methods and Applications by Jaroslav Haslinger, Markku Miettinen, Panagiotis D. Panagiotopoulos |
title_full_unstemmed | Finite Element Method for Hemivariational Inequalities Theory, Methods and Applications by Jaroslav Haslinger, Markku Miettinen, Panagiotis D. Panagiotopoulos |
title_short | Finite Element Method for Hemivariational Inequalities |
title_sort | finite element method for hemivariational inequalities theory methods and applications |
title_sub | Theory, Methods and Applications |
topic | Mathematics Mechanics Engineering mathematics Mathematics, general Appl.Mathematics/Computational Methods of Engineering Mathematik Finite-Elemente-Methode (DE-588)4017233-8 gnd Hemivariationsungleichung (DE-588)4564212-6 gnd |
topic_facet | Mathematics Mechanics Engineering mathematics Mathematics, general Appl.Mathematics/Computational Methods of Engineering Mathematik Finite-Elemente-Methode Hemivariationsungleichung |
url | https://doi.org/10.1007/978-1-4757-5233-5 |
work_keys_str_mv | AT haslingerjaroslav finiteelementmethodforhemivariationalinequalitiestheorymethodsandapplications AT miettinenmarkku finiteelementmethodforhemivariationalinequalitiestheorymethodsandapplications AT panagiotopoulospanagiotisd finiteelementmethodforhemivariationalinequalitiestheorymethodsandapplications |