An Introduction to Semiclassical and Microlocal Analysis:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
2002
|
Schriftenreihe: | Universitext
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This book presents most of the techniques used in the microlocal treatment of semiclassical problems coming from quantum physics. Both the standard C? pseudodifferential calculus and the analytic microlocal analysis are developed, in a context which remains intentionally global so that only the relevant difficulties of the theory are encountered. The originality lies in the fact that the main features of analytic microlocal analysis are derived from a single and elementary a priori estimate. Various exercises illustrate the chief results of each chapter while introducing the reader to further developments of the theory. Applications to the study of the Schrödinger operator are also discussed, to further the understanding of new notions or general results by replacing them in the context of quantum mechanics. This book is aimed at non-specialists of the subject and the only required prerequisite is a basic knowledge of the theory of distributions. André Martinez is currently Professor of Mathematics at the University of Bologna, Italy, after having moved from France where he was Professor at Paris-Nord University. He has published many research articles in semiclassical quantum mechanics, in particular related to the Born-Oppenheimer approximation, phase-space tunneling, scattering theory and resonances |
Beschreibung: | 1 Online-Ressource (VIII, 191 p) |
ISBN: | 9781475744958 9781441929617 |
ISSN: | 0172-5939 |
DOI: | 10.1007/978-1-4757-4495-8 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042421624 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2002 |||| o||u| ||||||eng d | ||
020 | |a 9781475744958 |c Online |9 978-1-4757-4495-8 | ||
020 | |a 9781441929617 |c Print |9 978-1-4419-2961-7 | ||
024 | 7 | |a 10.1007/978-1-4757-4495-8 |2 doi | |
035 | |a (OCoLC)863904791 | ||
035 | |a (DE-599)BVBBV042421624 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Martinez, André |e Verfasser |4 aut | |
245 | 1 | 0 | |a An Introduction to Semiclassical and Microlocal Analysis |c by André Martinez |
264 | 1 | |a New York, NY |b Springer New York |c 2002 | |
300 | |a 1 Online-Ressource (VIII, 191 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Universitext |x 0172-5939 | |
500 | |a This book presents most of the techniques used in the microlocal treatment of semiclassical problems coming from quantum physics. Both the standard C? pseudodifferential calculus and the analytic microlocal analysis are developed, in a context which remains intentionally global so that only the relevant difficulties of the theory are encountered. The originality lies in the fact that the main features of analytic microlocal analysis are derived from a single and elementary a priori estimate. Various exercises illustrate the chief results of each chapter while introducing the reader to further developments of the theory. Applications to the study of the Schrödinger operator are also discussed, to further the understanding of new notions or general results by replacing them in the context of quantum mechanics. This book is aimed at non-specialists of the subject and the only required prerequisite is a basic knowledge of the theory of distributions. André Martinez is currently Professor of Mathematics at the University of Bologna, Italy, after having moved from France where he was Professor at Paris-Nord University. He has published many research articles in semiclassical quantum mechanics, in particular related to the Born-Oppenheimer approximation, phase-space tunneling, scattering theory and resonances | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Cell aggregation / Mathematics | |
650 | 4 | |a Quantum theory | |
650 | 4 | |a Analysis | |
650 | 4 | |a Manifolds and Cell Complexes (incl. Diff.Topology) | |
650 | 4 | |a Quantum Physics | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Quantentheorie | |
650 | 0 | 7 | |a Quasiklassische Näherung |0 (DE-588)4296820-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mikrolokale Analysis |0 (DE-588)4169832-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quantentheorie |0 (DE-588)4047992-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Quantentheorie |0 (DE-588)4047992-4 |D s |
689 | 0 | 1 | |a Quasiklassische Näherung |0 (DE-588)4296820-3 |D s |
689 | 0 | 2 | |a Mikrolokale Analysis |0 (DE-588)4169832-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4757-4495-8 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857041 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153094917849088 |
---|---|
any_adam_object | |
author | Martinez, André |
author_facet | Martinez, André |
author_role | aut |
author_sort | Martinez, André |
author_variant | a m am |
building | Verbundindex |
bvnumber | BV042421624 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863904791 (DE-599)BVBBV042421624 |
dewey-full | 515 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515 |
dewey-search | 515 |
dewey-sort | 3515 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4757-4495-8 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03322nmm a2200565zc 4500</leader><controlfield tag="001">BV042421624</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2002 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781475744958</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4757-4495-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781441929617</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4419-2961-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4757-4495-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863904791</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421624</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Martinez, André</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An Introduction to Semiclassical and Microlocal Analysis</subfield><subfield code="c">by André Martinez</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VIII, 191 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Universitext</subfield><subfield code="x">0172-5939</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book presents most of the techniques used in the microlocal treatment of semiclassical problems coming from quantum physics. Both the standard C? pseudodifferential calculus and the analytic microlocal analysis are developed, in a context which remains intentionally global so that only the relevant difficulties of the theory are encountered. The originality lies in the fact that the main features of analytic microlocal analysis are derived from a single and elementary a priori estimate. Various exercises illustrate the chief results of each chapter while introducing the reader to further developments of the theory. Applications to the study of the Schrödinger operator are also discussed, to further the understanding of new notions or general results by replacing them in the context of quantum mechanics. This book is aimed at non-specialists of the subject and the only required prerequisite is a basic knowledge of the theory of distributions. André Martinez is currently Professor of Mathematics at the University of Bologna, Italy, after having moved from France where he was Professor at Paris-Nord University. He has published many research articles in semiclassical quantum mechanics, in particular related to the Born-Oppenheimer approximation, phase-space tunneling, scattering theory and resonances</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cell aggregation / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manifolds and Cell Complexes (incl. Diff.Topology)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantentheorie</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quasiklassische Näherung</subfield><subfield code="0">(DE-588)4296820-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mikrolokale Analysis</subfield><subfield code="0">(DE-588)4169832-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantentheorie</subfield><subfield code="0">(DE-588)4047992-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Quantentheorie</subfield><subfield code="0">(DE-588)4047992-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Quasiklassische Näherung</subfield><subfield code="0">(DE-588)4296820-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Mikrolokale Analysis</subfield><subfield code="0">(DE-588)4169832-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4757-4495-8</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857041</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042421624 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:09Z |
institution | BVB |
isbn | 9781475744958 9781441929617 |
issn | 0172-5939 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857041 |
oclc_num | 863904791 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (VIII, 191 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Springer New York |
record_format | marc |
series2 | Universitext |
spelling | Martinez, André Verfasser aut An Introduction to Semiclassical and Microlocal Analysis by André Martinez New York, NY Springer New York 2002 1 Online-Ressource (VIII, 191 p) txt rdacontent c rdamedia cr rdacarrier Universitext 0172-5939 This book presents most of the techniques used in the microlocal treatment of semiclassical problems coming from quantum physics. Both the standard C? pseudodifferential calculus and the analytic microlocal analysis are developed, in a context which remains intentionally global so that only the relevant difficulties of the theory are encountered. The originality lies in the fact that the main features of analytic microlocal analysis are derived from a single and elementary a priori estimate. Various exercises illustrate the chief results of each chapter while introducing the reader to further developments of the theory. Applications to the study of the Schrödinger operator are also discussed, to further the understanding of new notions or general results by replacing them in the context of quantum mechanics. This book is aimed at non-specialists of the subject and the only required prerequisite is a basic knowledge of the theory of distributions. André Martinez is currently Professor of Mathematics at the University of Bologna, Italy, after having moved from France where he was Professor at Paris-Nord University. He has published many research articles in semiclassical quantum mechanics, in particular related to the Born-Oppenheimer approximation, phase-space tunneling, scattering theory and resonances Mathematics Global analysis (Mathematics) Cell aggregation / Mathematics Quantum theory Analysis Manifolds and Cell Complexes (incl. Diff.Topology) Quantum Physics Mathematik Quantentheorie Quasiklassische Näherung (DE-588)4296820-3 gnd rswk-swf Mikrolokale Analysis (DE-588)4169832-0 gnd rswk-swf Quantentheorie (DE-588)4047992-4 gnd rswk-swf Quantentheorie (DE-588)4047992-4 s Quasiklassische Näherung (DE-588)4296820-3 s Mikrolokale Analysis (DE-588)4169832-0 s 1\p DE-604 https://doi.org/10.1007/978-1-4757-4495-8 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Martinez, André An Introduction to Semiclassical and Microlocal Analysis Mathematics Global analysis (Mathematics) Cell aggregation / Mathematics Quantum theory Analysis Manifolds and Cell Complexes (incl. Diff.Topology) Quantum Physics Mathematik Quantentheorie Quasiklassische Näherung (DE-588)4296820-3 gnd Mikrolokale Analysis (DE-588)4169832-0 gnd Quantentheorie (DE-588)4047992-4 gnd |
subject_GND | (DE-588)4296820-3 (DE-588)4169832-0 (DE-588)4047992-4 |
title | An Introduction to Semiclassical and Microlocal Analysis |
title_auth | An Introduction to Semiclassical and Microlocal Analysis |
title_exact_search | An Introduction to Semiclassical and Microlocal Analysis |
title_full | An Introduction to Semiclassical and Microlocal Analysis by André Martinez |
title_fullStr | An Introduction to Semiclassical and Microlocal Analysis by André Martinez |
title_full_unstemmed | An Introduction to Semiclassical and Microlocal Analysis by André Martinez |
title_short | An Introduction to Semiclassical and Microlocal Analysis |
title_sort | an introduction to semiclassical and microlocal analysis |
topic | Mathematics Global analysis (Mathematics) Cell aggregation / Mathematics Quantum theory Analysis Manifolds and Cell Complexes (incl. Diff.Topology) Quantum Physics Mathematik Quantentheorie Quasiklassische Näherung (DE-588)4296820-3 gnd Mikrolokale Analysis (DE-588)4169832-0 gnd Quantentheorie (DE-588)4047992-4 gnd |
topic_facet | Mathematics Global analysis (Mathematics) Cell aggregation / Mathematics Quantum theory Analysis Manifolds and Cell Complexes (incl. Diff.Topology) Quantum Physics Mathematik Quantentheorie Quasiklassische Näherung Mikrolokale Analysis |
url | https://doi.org/10.1007/978-1-4757-4495-8 |
work_keys_str_mv | AT martinezandre anintroductiontosemiclassicalandmicrolocalanalysis |