Theory and Practice of Finite Elements:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
2004
|
Schriftenreihe: | Applied Mathematical Sciences
159 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This book presents the mathematical theory of finite elements, starting from basic results on approximation theory and finite element interpolation and building up to more recent research topics, such as and Discontinuous Galerkin, subgrid viscosity stabilization, and a posteriori error estimation. The body of the text is organized into three parts plus two appendices collecting the functional analysis results used in the book. The first part develops the theoretical basis for the finite element method and emphasizes the fundamental role of inf-sup conditions. The second party addresses various applications encompassing elliptic PDE's, mixed formulations, first-order PDEs, and the time-dependent versions of these problems. The third part covers implementation issues and should provide readers with most of the practical details needed to write or understand a finite element code. Written at the graduate level, the text contains numerous examples and exercises and is intended to serve as a graduate textbook. Depending on one's interests, several reading paths can be followed, emphasizing either theoretical results, numerical algorithms, code efficiency, or applications in the engineering sciences. The book will be useful to researchers and graduate students in mathematics, computer science and engineering |
Beschreibung: | 1 Online-Ressource (XIV, 526 p) |
ISBN: | 9781475743555 9781441919182 |
ISSN: | 0066-5452 |
DOI: | 10.1007/978-1-4757-4355-5 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042421612 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2004 |||| o||u| ||||||eng d | ||
020 | |a 9781475743555 |c Online |9 978-1-4757-4355-5 | ||
020 | |a 9781441919182 |c Print |9 978-1-4419-1918-2 | ||
024 | 7 | |a 10.1007/978-1-4757-4355-5 |2 doi | |
035 | |a (OCoLC)863906910 | ||
035 | |a (DE-599)BVBBV042421612 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 519 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Ern, Alexandre |e Verfasser |4 aut | |
245 | 1 | 0 | |a Theory and Practice of Finite Elements |c by Alexandre Ern, Jean-Luc Guermond |
264 | 1 | |a New York, NY |b Springer New York |c 2004 | |
300 | |a 1 Online-Ressource (XIV, 526 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Applied Mathematical Sciences |v 159 |x 0066-5452 | |
500 | |a This book presents the mathematical theory of finite elements, starting from basic results on approximation theory and finite element interpolation and building up to more recent research topics, such as and Discontinuous Galerkin, subgrid viscosity stabilization, and a posteriori error estimation. The body of the text is organized into three parts plus two appendices collecting the functional analysis results used in the book. The first part develops the theoretical basis for the finite element method and emphasizes the fundamental role of inf-sup conditions. The second party addresses various applications encompassing elliptic PDE's, mixed formulations, first-order PDEs, and the time-dependent versions of these problems. The third part covers implementation issues and should provide readers with most of the practical details needed to write or understand a finite element code. Written at the graduate level, the text contains numerous examples and exercises and is intended to serve as a graduate textbook. Depending on one's interests, several reading paths can be followed, emphasizing either theoretical results, numerical algorithms, code efficiency, or applications in the engineering sciences. The book will be useful to researchers and graduate students in mathematics, computer science and engineering | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Computer science | |
650 | 4 | |a Differential equations, partial | |
650 | 4 | |a Computer science / Mathematics | |
650 | 4 | |a Engineering mathematics | |
650 | 4 | |a Mechanical engineering | |
650 | 4 | |a Applications of Mathematics | |
650 | 4 | |a Math Applications in Computer Science | |
650 | 4 | |a Partial Differential Equations | |
650 | 4 | |a Computational Mathematics and Numerical Analysis | |
650 | 4 | |a Appl.Mathematics/Computational Methods of Engineering | |
650 | 4 | |a Mechanical Engineering | |
650 | 4 | |a Informatik | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Finite-Elemente-Methode |0 (DE-588)4017233-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Finite-Elemente-Methode |0 (DE-588)4017233-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Guermond, Jean-Luc |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4757-4355-5 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857029 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153094887440384 |
---|---|
any_adam_object | |
author | Ern, Alexandre |
author_facet | Ern, Alexandre |
author_role | aut |
author_sort | Ern, Alexandre |
author_variant | a e ae |
building | Verbundindex |
bvnumber | BV042421612 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863906910 (DE-599)BVBBV042421612 |
dewey-full | 519 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519 |
dewey-search | 519 |
dewey-sort | 3519 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4757-4355-5 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03407nmm a2200589zcb4500</leader><controlfield tag="001">BV042421612</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2004 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781475743555</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4757-4355-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781441919182</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4419-1918-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4757-4355-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863906910</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421612</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ern, Alexandre</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Theory and Practice of Finite Elements</subfield><subfield code="c">by Alexandre Ern, Jean-Luc Guermond</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIV, 526 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Applied Mathematical Sciences</subfield><subfield code="v">159</subfield><subfield code="x">0066-5452</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book presents the mathematical theory of finite elements, starting from basic results on approximation theory and finite element interpolation and building up to more recent research topics, such as and Discontinuous Galerkin, subgrid viscosity stabilization, and a posteriori error estimation. The body of the text is organized into three parts plus two appendices collecting the functional analysis results used in the book. The first part develops the theoretical basis for the finite element method and emphasizes the fundamental role of inf-sup conditions. The second party addresses various applications encompassing elliptic PDE's, mixed formulations, first-order PDEs, and the time-dependent versions of these problems. The third part covers implementation issues and should provide readers with most of the practical details needed to write or understand a finite element code. Written at the graduate level, the text contains numerous examples and exercises and is intended to serve as a graduate textbook. Depending on one's interests, several reading paths can be followed, emphasizing either theoretical results, numerical algorithms, code efficiency, or applications in the engineering sciences. The book will be useful to researchers and graduate students in mathematics, computer science and engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanical engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Applications of Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Math Applications in Computer Science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational Mathematics and Numerical Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Appl.Mathematics/Computational Methods of Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanical Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Informatik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Finite-Elemente-Methode</subfield><subfield code="0">(DE-588)4017233-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Finite-Elemente-Methode</subfield><subfield code="0">(DE-588)4017233-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guermond, Jean-Luc</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4757-4355-5</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857029</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042421612 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:09Z |
institution | BVB |
isbn | 9781475743555 9781441919182 |
issn | 0066-5452 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857029 |
oclc_num | 863906910 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XIV, 526 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Springer New York |
record_format | marc |
series2 | Applied Mathematical Sciences |
spelling | Ern, Alexandre Verfasser aut Theory and Practice of Finite Elements by Alexandre Ern, Jean-Luc Guermond New York, NY Springer New York 2004 1 Online-Ressource (XIV, 526 p) txt rdacontent c rdamedia cr rdacarrier Applied Mathematical Sciences 159 0066-5452 This book presents the mathematical theory of finite elements, starting from basic results on approximation theory and finite element interpolation and building up to more recent research topics, such as and Discontinuous Galerkin, subgrid viscosity stabilization, and a posteriori error estimation. The body of the text is organized into three parts plus two appendices collecting the functional analysis results used in the book. The first part develops the theoretical basis for the finite element method and emphasizes the fundamental role of inf-sup conditions. The second party addresses various applications encompassing elliptic PDE's, mixed formulations, first-order PDEs, and the time-dependent versions of these problems. The third part covers implementation issues and should provide readers with most of the practical details needed to write or understand a finite element code. Written at the graduate level, the text contains numerous examples and exercises and is intended to serve as a graduate textbook. Depending on one's interests, several reading paths can be followed, emphasizing either theoretical results, numerical algorithms, code efficiency, or applications in the engineering sciences. The book will be useful to researchers and graduate students in mathematics, computer science and engineering Mathematics Computer science Differential equations, partial Computer science / Mathematics Engineering mathematics Mechanical engineering Applications of Mathematics Math Applications in Computer Science Partial Differential Equations Computational Mathematics and Numerical Analysis Appl.Mathematics/Computational Methods of Engineering Mechanical Engineering Informatik Mathematik Finite-Elemente-Methode (DE-588)4017233-8 gnd rswk-swf Finite-Elemente-Methode (DE-588)4017233-8 s 1\p DE-604 Guermond, Jean-Luc Sonstige oth https://doi.org/10.1007/978-1-4757-4355-5 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Ern, Alexandre Theory and Practice of Finite Elements Mathematics Computer science Differential equations, partial Computer science / Mathematics Engineering mathematics Mechanical engineering Applications of Mathematics Math Applications in Computer Science Partial Differential Equations Computational Mathematics and Numerical Analysis Appl.Mathematics/Computational Methods of Engineering Mechanical Engineering Informatik Mathematik Finite-Elemente-Methode (DE-588)4017233-8 gnd |
subject_GND | (DE-588)4017233-8 |
title | Theory and Practice of Finite Elements |
title_auth | Theory and Practice of Finite Elements |
title_exact_search | Theory and Practice of Finite Elements |
title_full | Theory and Practice of Finite Elements by Alexandre Ern, Jean-Luc Guermond |
title_fullStr | Theory and Practice of Finite Elements by Alexandre Ern, Jean-Luc Guermond |
title_full_unstemmed | Theory and Practice of Finite Elements by Alexandre Ern, Jean-Luc Guermond |
title_short | Theory and Practice of Finite Elements |
title_sort | theory and practice of finite elements |
topic | Mathematics Computer science Differential equations, partial Computer science / Mathematics Engineering mathematics Mechanical engineering Applications of Mathematics Math Applications in Computer Science Partial Differential Equations Computational Mathematics and Numerical Analysis Appl.Mathematics/Computational Methods of Engineering Mechanical Engineering Informatik Mathematik Finite-Elemente-Methode (DE-588)4017233-8 gnd |
topic_facet | Mathematics Computer science Differential equations, partial Computer science / Mathematics Engineering mathematics Mechanical engineering Applications of Mathematics Math Applications in Computer Science Partial Differential Equations Computational Mathematics and Numerical Analysis Appl.Mathematics/Computational Methods of Engineering Mechanical Engineering Informatik Mathematik Finite-Elemente-Methode |
url | https://doi.org/10.1007/978-1-4757-4355-5 |
work_keys_str_mv | AT ernalexandre theoryandpracticeoffiniteelements AT guermondjeanluc theoryandpracticeoffiniteelements |