Series Approximation Methods in Statistics:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1997
|
Ausgabe: | Second Edition |
Schriftenreihe: | Lecture Notes in Statistics
88 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This book was originally compiled for a course I taught at the University of Rochester in the fall of 1991, and is intended to give advanced graduate students in statistics an introduction to Edgeworth and saddlepoint approximations, and related techniques. Many other authors have also written monographs on this sub ject, and so this work is narrowly focused on two areas not recently discussed in theoretical text books. These areas are, first, a rigorous consideration of Edgeworth and saddlepoint expansion limit theorems, and second, a survey of the more recent developments in the field. In presenting expansion limit theorems I have drawn heavily on notation of McCullagh (1987) and on the theorems presented by Feller (1971) on Edgeworth expansions. For saddlepoint notation and results I relied most heavily on the many papers of Daniels, and a review paper by Reid (1988). Throughout this book I have tried to maintain consistent notation and to present theorems in such a way as to make a few theoretical results useful in as many contexts aS possible. This was not only in order to present as many results with as few proofs as possible, but more importantly to show the interconnections between the various facets of asymptotic theory. Special attention is paid to regularity conditions. The reasons they are needed and the parts they play in the proofs are both highlighted |
Beschreibung: | 1 Online-Ressource (XI, 186 p) |
ISBN: | 9781475742770 9780387982243 |
ISSN: | 0930-0325 |
DOI: | 10.1007/978-1-4757-4277-0 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042421597 | ||
003 | DE-604 | ||
005 | 20190322 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1997 |||| o||u| ||||||eng d | ||
020 | |a 9781475742770 |c Online |9 978-1-4757-4277-0 | ||
020 | |a 9780387982243 |c Print |9 978-0-387-98224-3 | ||
024 | 7 | |a 10.1007/978-1-4757-4277-0 |2 doi | |
035 | |a (OCoLC)1165603511 | ||
035 | |a (DE-599)BVBBV042421597 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 519.5 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Kolassa, John E. |d 1963- |e Verfasser |0 (DE-588)106849459X |4 aut | |
245 | 1 | 0 | |a Series Approximation Methods in Statistics |c by John E. Kolassa |
250 | |a Second Edition | ||
264 | 1 | |a New York, NY |b Springer New York |c 1997 | |
300 | |a 1 Online-Ressource (XI, 186 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Lecture Notes in Statistics |v 88 |x 0930-0325 | |
500 | |a This book was originally compiled for a course I taught at the University of Rochester in the fall of 1991, and is intended to give advanced graduate students in statistics an introduction to Edgeworth and saddlepoint approximations, and related techniques. Many other authors have also written monographs on this sub ject, and so this work is narrowly focused on two areas not recently discussed in theoretical text books. These areas are, first, a rigorous consideration of Edgeworth and saddlepoint expansion limit theorems, and second, a survey of the more recent developments in the field. In presenting expansion limit theorems I have drawn heavily on notation of McCullagh (1987) and on the theorems presented by Feller (1971) on Edgeworth expansions. For saddlepoint notation and results I relied most heavily on the many papers of Daniels, and a review paper by Reid (1988). Throughout this book I have tried to maintain consistent notation and to present theorems in such a way as to make a few theoretical results useful in as many contexts aS possible. This was not only in order to present as many results with as few proofs as possible, but more importantly to show the interconnections between the various facets of asymptotic theory. Special attention is paid to regularity conditions. The reasons they are needed and the parts they play in the proofs are both highlighted | ||
650 | 4 | |a Statistics | |
650 | 4 | |a Statistics, general | |
650 | 4 | |a Statistik | |
650 | 0 | 7 | |a Sattelpunkt-Reihe |0 (DE-588)4341419-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Statistik |0 (DE-588)4056995-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Reihenentwicklung |0 (DE-588)4153066-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Edgeworth-Reihe |0 (DE-588)4296960-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Asymptotische Statistik |0 (DE-588)4203167-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Approximation |0 (DE-588)4002498-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Edgeworth-Reihe |0 (DE-588)4296960-8 |D s |
689 | 0 | 1 | |a Approximation |0 (DE-588)4002498-2 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Sattelpunkt-Reihe |0 (DE-588)4341419-9 |D s |
689 | 1 | 1 | |a Approximation |0 (DE-588)4002498-2 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Reihenentwicklung |0 (DE-588)4153066-4 |D s |
689 | 2 | 1 | |a Statistik |0 (DE-588)4056995-0 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
689 | 3 | 0 | |a Asymptotische Statistik |0 (DE-588)4203167-9 |D s |
689 | 3 | |8 4\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4757-4277-0 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857014 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153094843400192 |
---|---|
any_adam_object | |
author | Kolassa, John E. 1963- |
author_GND | (DE-588)106849459X |
author_facet | Kolassa, John E. 1963- |
author_role | aut |
author_sort | Kolassa, John E. 1963- |
author_variant | j e k je jek |
building | Verbundindex |
bvnumber | BV042421597 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1165603511 (DE-599)BVBBV042421597 |
dewey-full | 519.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.5 |
dewey-search | 519.5 |
dewey-sort | 3519.5 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4757-4277-0 |
edition | Second Edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03936nmm a2200661zcb4500</leader><controlfield tag="001">BV042421597</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190322 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1997 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781475742770</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4757-4277-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387982243</subfield><subfield code="c">Print</subfield><subfield code="9">978-0-387-98224-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4757-4277-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1165603511</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421597</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.5</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kolassa, John E.</subfield><subfield code="d">1963-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)106849459X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Series Approximation Methods in Statistics</subfield><subfield code="c">by John E. Kolassa</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second Edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1997</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XI, 186 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Lecture Notes in Statistics</subfield><subfield code="v">88</subfield><subfield code="x">0930-0325</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book was originally compiled for a course I taught at the University of Rochester in the fall of 1991, and is intended to give advanced graduate students in statistics an introduction to Edgeworth and saddlepoint approximations, and related techniques. Many other authors have also written monographs on this sub ject, and so this work is narrowly focused on two areas not recently discussed in theoretical text books. These areas are, first, a rigorous consideration of Edgeworth and saddlepoint expansion limit theorems, and second, a survey of the more recent developments in the field. In presenting expansion limit theorems I have drawn heavily on notation of McCullagh (1987) and on the theorems presented by Feller (1971) on Edgeworth expansions. For saddlepoint notation and results I relied most heavily on the many papers of Daniels, and a review paper by Reid (1988). Throughout this book I have tried to maintain consistent notation and to present theorems in such a way as to make a few theoretical results useful in as many contexts aS possible. This was not only in order to present as many results with as few proofs as possible, but more importantly to show the interconnections between the various facets of asymptotic theory. Special attention is paid to regularity conditions. The reasons they are needed and the parts they play in the proofs are both highlighted</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Sattelpunkt-Reihe</subfield><subfield code="0">(DE-588)4341419-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Statistik</subfield><subfield code="0">(DE-588)4056995-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Reihenentwicklung</subfield><subfield code="0">(DE-588)4153066-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Edgeworth-Reihe</subfield><subfield code="0">(DE-588)4296960-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Asymptotische Statistik</subfield><subfield code="0">(DE-588)4203167-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Approximation</subfield><subfield code="0">(DE-588)4002498-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Edgeworth-Reihe</subfield><subfield code="0">(DE-588)4296960-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Approximation</subfield><subfield code="0">(DE-588)4002498-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Sattelpunkt-Reihe</subfield><subfield code="0">(DE-588)4341419-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Approximation</subfield><subfield code="0">(DE-588)4002498-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Reihenentwicklung</subfield><subfield code="0">(DE-588)4153066-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Statistik</subfield><subfield code="0">(DE-588)4056995-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Asymptotische Statistik</subfield><subfield code="0">(DE-588)4203167-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4757-4277-0</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857014</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042421597 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:09Z |
institution | BVB |
isbn | 9781475742770 9780387982243 |
issn | 0930-0325 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857014 |
oclc_num | 1165603511 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XI, 186 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1997 |
publishDateSearch | 1997 |
publishDateSort | 1997 |
publisher | Springer New York |
record_format | marc |
series2 | Lecture Notes in Statistics |
spelling | Kolassa, John E. 1963- Verfasser (DE-588)106849459X aut Series Approximation Methods in Statistics by John E. Kolassa Second Edition New York, NY Springer New York 1997 1 Online-Ressource (XI, 186 p) txt rdacontent c rdamedia cr rdacarrier Lecture Notes in Statistics 88 0930-0325 This book was originally compiled for a course I taught at the University of Rochester in the fall of 1991, and is intended to give advanced graduate students in statistics an introduction to Edgeworth and saddlepoint approximations, and related techniques. Many other authors have also written monographs on this sub ject, and so this work is narrowly focused on two areas not recently discussed in theoretical text books. These areas are, first, a rigorous consideration of Edgeworth and saddlepoint expansion limit theorems, and second, a survey of the more recent developments in the field. In presenting expansion limit theorems I have drawn heavily on notation of McCullagh (1987) and on the theorems presented by Feller (1971) on Edgeworth expansions. For saddlepoint notation and results I relied most heavily on the many papers of Daniels, and a review paper by Reid (1988). Throughout this book I have tried to maintain consistent notation and to present theorems in such a way as to make a few theoretical results useful in as many contexts aS possible. This was not only in order to present as many results with as few proofs as possible, but more importantly to show the interconnections between the various facets of asymptotic theory. Special attention is paid to regularity conditions. The reasons they are needed and the parts they play in the proofs are both highlighted Statistics Statistics, general Statistik Sattelpunkt-Reihe (DE-588)4341419-9 gnd rswk-swf Statistik (DE-588)4056995-0 gnd rswk-swf Reihenentwicklung (DE-588)4153066-4 gnd rswk-swf Edgeworth-Reihe (DE-588)4296960-8 gnd rswk-swf Asymptotische Statistik (DE-588)4203167-9 gnd rswk-swf Approximation (DE-588)4002498-2 gnd rswk-swf Edgeworth-Reihe (DE-588)4296960-8 s Approximation (DE-588)4002498-2 s 1\p DE-604 Sattelpunkt-Reihe (DE-588)4341419-9 s 2\p DE-604 Reihenentwicklung (DE-588)4153066-4 s Statistik (DE-588)4056995-0 s 3\p DE-604 Asymptotische Statistik (DE-588)4203167-9 s 4\p DE-604 https://doi.org/10.1007/978-1-4757-4277-0 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Kolassa, John E. 1963- Series Approximation Methods in Statistics Statistics Statistics, general Statistik Sattelpunkt-Reihe (DE-588)4341419-9 gnd Statistik (DE-588)4056995-0 gnd Reihenentwicklung (DE-588)4153066-4 gnd Edgeworth-Reihe (DE-588)4296960-8 gnd Asymptotische Statistik (DE-588)4203167-9 gnd Approximation (DE-588)4002498-2 gnd |
subject_GND | (DE-588)4341419-9 (DE-588)4056995-0 (DE-588)4153066-4 (DE-588)4296960-8 (DE-588)4203167-9 (DE-588)4002498-2 |
title | Series Approximation Methods in Statistics |
title_auth | Series Approximation Methods in Statistics |
title_exact_search | Series Approximation Methods in Statistics |
title_full | Series Approximation Methods in Statistics by John E. Kolassa |
title_fullStr | Series Approximation Methods in Statistics by John E. Kolassa |
title_full_unstemmed | Series Approximation Methods in Statistics by John E. Kolassa |
title_short | Series Approximation Methods in Statistics |
title_sort | series approximation methods in statistics |
topic | Statistics Statistics, general Statistik Sattelpunkt-Reihe (DE-588)4341419-9 gnd Statistik (DE-588)4056995-0 gnd Reihenentwicklung (DE-588)4153066-4 gnd Edgeworth-Reihe (DE-588)4296960-8 gnd Asymptotische Statistik (DE-588)4203167-9 gnd Approximation (DE-588)4002498-2 gnd |
topic_facet | Statistics Statistics, general Statistik Sattelpunkt-Reihe Reihenentwicklung Edgeworth-Reihe Asymptotische Statistik Approximation |
url | https://doi.org/10.1007/978-1-4757-4277-0 |
work_keys_str_mv | AT kolassajohne seriesapproximationmethodsinstatistics |