Series Approximation Methods in Statistics:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1994
|
Schriftenreihe: | Lecture Notes in Statistics
88 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This book was originally compiled for a course I taught at the University of Rochester in the fall of 1991, and is intended to give advanced graduate students in statistics an introduction to Edgeworth and saddlepoint approximations, and related techniques. Many other authors have also written monographs on this subject, and so this work is narrowly focused on two areas not recently discussed in theoretical text books. These areas are, first, a rigorous consideration of Edgeworth and saddlepoint expansion limit theorems, and second, a survey of the more recent developments in the field. In presenting expansion limit theorems I have drawn heavily 011 notation of McCullagh (1987) and on the theorems presented by Feller (1971) on Edgeworth expansions. For saddlepoint notation and results I relied most heavily on the many papers of Daniels, and a review paper by Reid (1988). Throughout this book I have tried to maintain consistent notation and to present theorems in such a way as to make a few theoretical results useful in as many contexts as possible. This was not only in order to present as many results with as few proofs as possible, but more importantly to show the interconnections between the various facets of asymptotic theory. Special attention is paid to regularity conditions. The reasons they are needed and the parts they play in the proofs are both highlighted |
Beschreibung: | 1 Online-Ressource (VIII, 153 p) |
ISBN: | 9781475742756 9780387942773 |
ISSN: | 0930-0325 |
DOI: | 10.1007/978-1-4757-4275-6 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042421596 | ||
003 | DE-604 | ||
005 | 20190322 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1994 |||| o||u| ||||||eng d | ||
020 | |a 9781475742756 |c Online |9 978-1-4757-4275-6 | ||
020 | |a 9780387942773 |c Print |9 978-0-387-94277-3 | ||
024 | 7 | |a 10.1007/978-1-4757-4275-6 |2 doi | |
035 | |a (OCoLC)863997274 | ||
035 | |a (DE-599)BVBBV042421596 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 519.2 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Kolassa, John E. |d 1963- |e Verfasser |0 (DE-588)106849459X |4 aut | |
245 | 1 | 0 | |a Series Approximation Methods in Statistics |c by John E. Kolassa |
264 | 1 | |a New York, NY |b Springer New York |c 1994 | |
300 | |a 1 Online-Ressource (VIII, 153 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Lecture Notes in Statistics |v 88 |x 0930-0325 | |
500 | |a This book was originally compiled for a course I taught at the University of Rochester in the fall of 1991, and is intended to give advanced graduate students in statistics an introduction to Edgeworth and saddlepoint approximations, and related techniques. Many other authors have also written monographs on this subject, and so this work is narrowly focused on two areas not recently discussed in theoretical text books. These areas are, first, a rigorous consideration of Edgeworth and saddlepoint expansion limit theorems, and second, a survey of the more recent developments in the field. In presenting expansion limit theorems I have drawn heavily 011 notation of McCullagh (1987) and on the theorems presented by Feller (1971) on Edgeworth expansions. For saddlepoint notation and results I relied most heavily on the many papers of Daniels, and a review paper by Reid (1988). Throughout this book I have tried to maintain consistent notation and to present theorems in such a way as to make a few theoretical results useful in as many contexts as possible. This was not only in order to present as many results with as few proofs as possible, but more importantly to show the interconnections between the various facets of asymptotic theory. Special attention is paid to regularity conditions. The reasons they are needed and the parts they play in the proofs are both highlighted | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Distribution (Probability theory) | |
650 | 4 | |a Probability Theory and Stochastic Processes | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Statistik |0 (DE-588)4056995-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Edgeworth-Reihe |0 (DE-588)4296960-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Asymptotische Statistik |0 (DE-588)4203167-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Approximation |0 (DE-588)4002498-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Sattelpunkt-Reihe |0 (DE-588)4341419-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Reihenentwicklung |0 (DE-588)4153066-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Edgeworth-Reihe |0 (DE-588)4296960-8 |D s |
689 | 0 | 1 | |a Approximation |0 (DE-588)4002498-2 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Sattelpunkt-Reihe |0 (DE-588)4341419-9 |D s |
689 | 1 | 1 | |a Approximation |0 (DE-588)4002498-2 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Reihenentwicklung |0 (DE-588)4153066-4 |D s |
689 | 2 | 1 | |a Statistik |0 (DE-588)4056995-0 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
689 | 3 | 0 | |a Asymptotische Statistik |0 (DE-588)4203167-9 |D s |
689 | 3 | |8 4\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4757-4275-6 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857013 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153094839205888 |
---|---|
any_adam_object | |
author | Kolassa, John E. 1963- |
author_GND | (DE-588)106849459X |
author_facet | Kolassa, John E. 1963- |
author_role | aut |
author_sort | Kolassa, John E. 1963- |
author_variant | j e k je jek |
building | Verbundindex |
bvnumber | BV042421596 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863997274 (DE-599)BVBBV042421596 |
dewey-full | 519.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.2 |
dewey-search | 519.2 |
dewey-sort | 3519.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4757-4275-6 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03980nmm a2200661zcb4500</leader><controlfield tag="001">BV042421596</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190322 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1994 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781475742756</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4757-4275-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387942773</subfield><subfield code="c">Print</subfield><subfield code="9">978-0-387-94277-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4757-4275-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863997274</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421596</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kolassa, John E.</subfield><subfield code="d">1963-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)106849459X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Series Approximation Methods in Statistics</subfield><subfield code="c">by John E. Kolassa</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1994</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VIII, 153 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Lecture Notes in Statistics</subfield><subfield code="v">88</subfield><subfield code="x">0930-0325</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book was originally compiled for a course I taught at the University of Rochester in the fall of 1991, and is intended to give advanced graduate students in statistics an introduction to Edgeworth and saddlepoint approximations, and related techniques. Many other authors have also written monographs on this subject, and so this work is narrowly focused on two areas not recently discussed in theoretical text books. These areas are, first, a rigorous consideration of Edgeworth and saddlepoint expansion limit theorems, and second, a survey of the more recent developments in the field. In presenting expansion limit theorems I have drawn heavily 011 notation of McCullagh (1987) and on the theorems presented by Feller (1971) on Edgeworth expansions. For saddlepoint notation and results I relied most heavily on the many papers of Daniels, and a review paper by Reid (1988). Throughout this book I have tried to maintain consistent notation and to present theorems in such a way as to make a few theoretical results useful in as many contexts as possible. This was not only in order to present as many results with as few proofs as possible, but more importantly to show the interconnections between the various facets of asymptotic theory. Special attention is paid to regularity conditions. The reasons they are needed and the parts they play in the proofs are both highlighted</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distribution (Probability theory)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability Theory and Stochastic Processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Statistik</subfield><subfield code="0">(DE-588)4056995-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Edgeworth-Reihe</subfield><subfield code="0">(DE-588)4296960-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Asymptotische Statistik</subfield><subfield code="0">(DE-588)4203167-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Approximation</subfield><subfield code="0">(DE-588)4002498-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Sattelpunkt-Reihe</subfield><subfield code="0">(DE-588)4341419-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Reihenentwicklung</subfield><subfield code="0">(DE-588)4153066-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Edgeworth-Reihe</subfield><subfield code="0">(DE-588)4296960-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Approximation</subfield><subfield code="0">(DE-588)4002498-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Sattelpunkt-Reihe</subfield><subfield code="0">(DE-588)4341419-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Approximation</subfield><subfield code="0">(DE-588)4002498-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Reihenentwicklung</subfield><subfield code="0">(DE-588)4153066-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Statistik</subfield><subfield code="0">(DE-588)4056995-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Asymptotische Statistik</subfield><subfield code="0">(DE-588)4203167-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4757-4275-6</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857013</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042421596 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:09Z |
institution | BVB |
isbn | 9781475742756 9780387942773 |
issn | 0930-0325 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857013 |
oclc_num | 863997274 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (VIII, 153 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1994 |
publishDateSearch | 1994 |
publishDateSort | 1994 |
publisher | Springer New York |
record_format | marc |
series2 | Lecture Notes in Statistics |
spelling | Kolassa, John E. 1963- Verfasser (DE-588)106849459X aut Series Approximation Methods in Statistics by John E. Kolassa New York, NY Springer New York 1994 1 Online-Ressource (VIII, 153 p) txt rdacontent c rdamedia cr rdacarrier Lecture Notes in Statistics 88 0930-0325 This book was originally compiled for a course I taught at the University of Rochester in the fall of 1991, and is intended to give advanced graduate students in statistics an introduction to Edgeworth and saddlepoint approximations, and related techniques. Many other authors have also written monographs on this subject, and so this work is narrowly focused on two areas not recently discussed in theoretical text books. These areas are, first, a rigorous consideration of Edgeworth and saddlepoint expansion limit theorems, and second, a survey of the more recent developments in the field. In presenting expansion limit theorems I have drawn heavily 011 notation of McCullagh (1987) and on the theorems presented by Feller (1971) on Edgeworth expansions. For saddlepoint notation and results I relied most heavily on the many papers of Daniels, and a review paper by Reid (1988). Throughout this book I have tried to maintain consistent notation and to present theorems in such a way as to make a few theoretical results useful in as many contexts as possible. This was not only in order to present as many results with as few proofs as possible, but more importantly to show the interconnections between the various facets of asymptotic theory. Special attention is paid to regularity conditions. The reasons they are needed and the parts they play in the proofs are both highlighted Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Mathematik Statistik (DE-588)4056995-0 gnd rswk-swf Edgeworth-Reihe (DE-588)4296960-8 gnd rswk-swf Asymptotische Statistik (DE-588)4203167-9 gnd rswk-swf Approximation (DE-588)4002498-2 gnd rswk-swf Sattelpunkt-Reihe (DE-588)4341419-9 gnd rswk-swf Reihenentwicklung (DE-588)4153066-4 gnd rswk-swf Edgeworth-Reihe (DE-588)4296960-8 s Approximation (DE-588)4002498-2 s 1\p DE-604 Sattelpunkt-Reihe (DE-588)4341419-9 s 2\p DE-604 Reihenentwicklung (DE-588)4153066-4 s Statistik (DE-588)4056995-0 s 3\p DE-604 Asymptotische Statistik (DE-588)4203167-9 s 4\p DE-604 https://doi.org/10.1007/978-1-4757-4275-6 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Kolassa, John E. 1963- Series Approximation Methods in Statistics Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Mathematik Statistik (DE-588)4056995-0 gnd Edgeworth-Reihe (DE-588)4296960-8 gnd Asymptotische Statistik (DE-588)4203167-9 gnd Approximation (DE-588)4002498-2 gnd Sattelpunkt-Reihe (DE-588)4341419-9 gnd Reihenentwicklung (DE-588)4153066-4 gnd |
subject_GND | (DE-588)4056995-0 (DE-588)4296960-8 (DE-588)4203167-9 (DE-588)4002498-2 (DE-588)4341419-9 (DE-588)4153066-4 |
title | Series Approximation Methods in Statistics |
title_auth | Series Approximation Methods in Statistics |
title_exact_search | Series Approximation Methods in Statistics |
title_full | Series Approximation Methods in Statistics by John E. Kolassa |
title_fullStr | Series Approximation Methods in Statistics by John E. Kolassa |
title_full_unstemmed | Series Approximation Methods in Statistics by John E. Kolassa |
title_short | Series Approximation Methods in Statistics |
title_sort | series approximation methods in statistics |
topic | Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Mathematik Statistik (DE-588)4056995-0 gnd Edgeworth-Reihe (DE-588)4296960-8 gnd Asymptotische Statistik (DE-588)4203167-9 gnd Approximation (DE-588)4002498-2 gnd Sattelpunkt-Reihe (DE-588)4341419-9 gnd Reihenentwicklung (DE-588)4153066-4 gnd |
topic_facet | Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Mathematik Statistik Edgeworth-Reihe Asymptotische Statistik Approximation Sattelpunkt-Reihe Reihenentwicklung |
url | https://doi.org/10.1007/978-1-4757-4275-6 |
work_keys_str_mv | AT kolassajohne seriesapproximationmethodsinstatistics |