Rational Points on Elliptic Curves:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1992
|
Schriftenreihe: | Undergraduate Texts in Mathematics
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | In 1961 the second author delivered a series of lectures at Haverford College on the subject of "Rational Points on Cubic Curves. " These lectures, intended for junior and senior mathematics majors, were recorded, transcribed, and printed in mimeograph form. Since that time they have been widely distributed as photocopies of ever decreasing legibility, and portions have appeared in various textbooks (Husemoller [1], Chahal [1]), but they have never appeared in their entirety. In view of the recent interest in the theory of elliptic curves for subjects ranging from cryptography (Lenstra [1], Koblitz [2]) to physics (Luck-Moussa-Waldschmidt [1]), as well as the tremendous purely mathematical activity in this area, it seems a propitious time to publish an expanded version of those original notes suitable for presentation to an advanced undergraduate audience. We have attempted to maintain much of the informality of the original Haverford lectures. Our main goal in doing this has been to write a textbook in a technically difficult field which is "readable" by the average undergraduate mathematics major. We hope we have succeeded in this goal. The most obvious drawback to such an approach is that we have not been entirely rigorous in all of our proofs. In particular, much of the foundational material on elliptic curves presented in Chapter I is meant to explain and convince, rather than to rigorously prove |
Beschreibung: | 1 Online-Ressource (X, 281 p) |
ISBN: | 9781475742527 9781441931016 |
ISSN: | 0172-6056 |
DOI: | 10.1007/978-1-4757-4252-7 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042421592 | ||
003 | DE-604 | ||
005 | 20200116 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1992 |||| o||u| ||||||eng d | ||
020 | |a 9781475742527 |c Online |9 978-1-4757-4252-7 | ||
020 | |a 9781441931016 |c Print |9 978-1-4419-3101-6 | ||
024 | 7 | |a 10.1007/978-1-4757-4252-7 |2 doi | |
035 | |a (OCoLC)879623892 | ||
035 | |a (DE-599)BVBBV042421592 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 516.35 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Silverman, Joseph H. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Rational Points on Elliptic Curves |c by Joseph H. Silverman, John Tate |
264 | 1 | |a New York, NY |b Springer New York |c 1992 | |
300 | |a 1 Online-Ressource (X, 281 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Undergraduate Texts in Mathematics |x 0172-6056 | |
500 | |a In 1961 the second author delivered a series of lectures at Haverford College on the subject of "Rational Points on Cubic Curves. " These lectures, intended for junior and senior mathematics majors, were recorded, transcribed, and printed in mimeograph form. Since that time they have been widely distributed as photocopies of ever decreasing legibility, and portions have appeared in various textbooks (Husemoller [1], Chahal [1]), but they have never appeared in their entirety. In view of the recent interest in the theory of elliptic curves for subjects ranging from cryptography (Lenstra [1], Koblitz [2]) to physics (Luck-Moussa-Waldschmidt [1]), as well as the tremendous purely mathematical activity in this area, it seems a propitious time to publish an expanded version of those original notes suitable for presentation to an advanced undergraduate audience. We have attempted to maintain much of the informality of the original Haverford lectures. Our main goal in doing this has been to write a textbook in a technically difficult field which is "readable" by the average undergraduate mathematics major. We hope we have succeeded in this goal. The most obvious drawback to such an approach is that we have not been entirely rigorous in all of our proofs. In particular, much of the foundational material on elliptic curves presented in Chapter I is meant to explain and convince, rather than to rigorously prove | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Geometry, algebraic | |
650 | 4 | |a Algebraic Geometry | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Elliptische Kurve |0 (DE-588)4014487-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Rationaler Punkt |0 (DE-588)4177004-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Diophantische Analysis |0 (DE-588)4150020-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algebraische Kurve |0 (DE-588)4001165-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Rationaler Punkt |0 (DE-588)4177004-3 |D s |
689 | 0 | 1 | |a Algebraische Kurve |0 (DE-588)4001165-3 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Elliptische Kurve |0 (DE-588)4014487-2 |D s |
689 | 1 | 1 | |a Diophantische Analysis |0 (DE-588)4150020-9 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Rationaler Punkt |0 (DE-588)4177004-3 |D s |
689 | 2 | 1 | |a Elliptische Kurve |0 (DE-588)4014487-2 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
700 | 1 | |a Tate, John Torrence |d 1925-2019 |e Sonstige |0 (DE-588)117726079 |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4757-4252-7 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857009 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153094832914432 |
---|---|
any_adam_object | |
author | Silverman, Joseph H. |
author_GND | (DE-588)117726079 |
author_facet | Silverman, Joseph H. |
author_role | aut |
author_sort | Silverman, Joseph H. |
author_variant | j h s jh jhs |
building | Verbundindex |
bvnumber | BV042421592 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)879623892 (DE-599)BVBBV042421592 |
dewey-full | 516.35 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.35 |
dewey-search | 516.35 |
dewey-sort | 3516.35 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4757-4252-7 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03766nmm a2200613zc 4500</leader><controlfield tag="001">BV042421592</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200116 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1992 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781475742527</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4757-4252-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781441931016</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4419-3101-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4757-4252-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)879623892</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421592</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.35</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Silverman, Joseph H.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Rational Points on Elliptic Curves</subfield><subfield code="c">by Joseph H. Silverman, John Tate</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1992</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 281 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Undergraduate Texts in Mathematics</subfield><subfield code="x">0172-6056</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">In 1961 the second author delivered a series of lectures at Haverford College on the subject of "Rational Points on Cubic Curves. " These lectures, intended for junior and senior mathematics majors, were recorded, transcribed, and printed in mimeograph form. Since that time they have been widely distributed as photocopies of ever decreasing legibility, and portions have appeared in various textbooks (Husemoller [1], Chahal [1]), but they have never appeared in their entirety. In view of the recent interest in the theory of elliptic curves for subjects ranging from cryptography (Lenstra [1], Koblitz [2]) to physics (Luck-Moussa-Waldschmidt [1]), as well as the tremendous purely mathematical activity in this area, it seems a propitious time to publish an expanded version of those original notes suitable for presentation to an advanced undergraduate audience. We have attempted to maintain much of the informality of the original Haverford lectures. Our main goal in doing this has been to write a textbook in a technically difficult field which is "readable" by the average undergraduate mathematics major. We hope we have succeeded in this goal. The most obvious drawback to such an approach is that we have not been entirely rigorous in all of our proofs. In particular, much of the foundational material on elliptic curves presented in Chapter I is meant to explain and convince, rather than to rigorously prove</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, algebraic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elliptische Kurve</subfield><subfield code="0">(DE-588)4014487-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Rationaler Punkt</subfield><subfield code="0">(DE-588)4177004-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Diophantische Analysis</subfield><subfield code="0">(DE-588)4150020-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Kurve</subfield><subfield code="0">(DE-588)4001165-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Rationaler Punkt</subfield><subfield code="0">(DE-588)4177004-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Algebraische Kurve</subfield><subfield code="0">(DE-588)4001165-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Elliptische Kurve</subfield><subfield code="0">(DE-588)4014487-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Diophantische Analysis</subfield><subfield code="0">(DE-588)4150020-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Rationaler Punkt</subfield><subfield code="0">(DE-588)4177004-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Elliptische Kurve</subfield><subfield code="0">(DE-588)4014487-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tate, John Torrence</subfield><subfield code="d">1925-2019</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)117726079</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4757-4252-7</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857009</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042421592 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:09Z |
institution | BVB |
isbn | 9781475742527 9781441931016 |
issn | 0172-6056 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857009 |
oclc_num | 879623892 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (X, 281 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1992 |
publishDateSearch | 1992 |
publishDateSort | 1992 |
publisher | Springer New York |
record_format | marc |
series2 | Undergraduate Texts in Mathematics |
spelling | Silverman, Joseph H. Verfasser aut Rational Points on Elliptic Curves by Joseph H. Silverman, John Tate New York, NY Springer New York 1992 1 Online-Ressource (X, 281 p) txt rdacontent c rdamedia cr rdacarrier Undergraduate Texts in Mathematics 0172-6056 In 1961 the second author delivered a series of lectures at Haverford College on the subject of "Rational Points on Cubic Curves. " These lectures, intended for junior and senior mathematics majors, were recorded, transcribed, and printed in mimeograph form. Since that time they have been widely distributed as photocopies of ever decreasing legibility, and portions have appeared in various textbooks (Husemoller [1], Chahal [1]), but they have never appeared in their entirety. In view of the recent interest in the theory of elliptic curves for subjects ranging from cryptography (Lenstra [1], Koblitz [2]) to physics (Luck-Moussa-Waldschmidt [1]), as well as the tremendous purely mathematical activity in this area, it seems a propitious time to publish an expanded version of those original notes suitable for presentation to an advanced undergraduate audience. We have attempted to maintain much of the informality of the original Haverford lectures. Our main goal in doing this has been to write a textbook in a technically difficult field which is "readable" by the average undergraduate mathematics major. We hope we have succeeded in this goal. The most obvious drawback to such an approach is that we have not been entirely rigorous in all of our proofs. In particular, much of the foundational material on elliptic curves presented in Chapter I is meant to explain and convince, rather than to rigorously prove Mathematics Geometry, algebraic Algebraic Geometry Mathematik Elliptische Kurve (DE-588)4014487-2 gnd rswk-swf Rationaler Punkt (DE-588)4177004-3 gnd rswk-swf Diophantische Analysis (DE-588)4150020-9 gnd rswk-swf Algebraische Kurve (DE-588)4001165-3 gnd rswk-swf Rationaler Punkt (DE-588)4177004-3 s Algebraische Kurve (DE-588)4001165-3 s 1\p DE-604 Elliptische Kurve (DE-588)4014487-2 s Diophantische Analysis (DE-588)4150020-9 s 2\p DE-604 3\p DE-604 Tate, John Torrence 1925-2019 Sonstige (DE-588)117726079 oth https://doi.org/10.1007/978-1-4757-4252-7 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Silverman, Joseph H. Rational Points on Elliptic Curves Mathematics Geometry, algebraic Algebraic Geometry Mathematik Elliptische Kurve (DE-588)4014487-2 gnd Rationaler Punkt (DE-588)4177004-3 gnd Diophantische Analysis (DE-588)4150020-9 gnd Algebraische Kurve (DE-588)4001165-3 gnd |
subject_GND | (DE-588)4014487-2 (DE-588)4177004-3 (DE-588)4150020-9 (DE-588)4001165-3 |
title | Rational Points on Elliptic Curves |
title_auth | Rational Points on Elliptic Curves |
title_exact_search | Rational Points on Elliptic Curves |
title_full | Rational Points on Elliptic Curves by Joseph H. Silverman, John Tate |
title_fullStr | Rational Points on Elliptic Curves by Joseph H. Silverman, John Tate |
title_full_unstemmed | Rational Points on Elliptic Curves by Joseph H. Silverman, John Tate |
title_short | Rational Points on Elliptic Curves |
title_sort | rational points on elliptic curves |
topic | Mathematics Geometry, algebraic Algebraic Geometry Mathematik Elliptische Kurve (DE-588)4014487-2 gnd Rationaler Punkt (DE-588)4177004-3 gnd Diophantische Analysis (DE-588)4150020-9 gnd Algebraische Kurve (DE-588)4001165-3 gnd |
topic_facet | Mathematics Geometry, algebraic Algebraic Geometry Mathematik Elliptische Kurve Rationaler Punkt Diophantische Analysis Algebraische Kurve |
url | https://doi.org/10.1007/978-1-4757-4252-7 |
work_keys_str_mv | AT silvermanjosephh rationalpointsonellipticcurves AT tatejohntorrence rationalpointsonellipticcurves |